Geotechnical Investigation

Proposed Warehouse Development 221-227, 289-317 Luddenham Road Orchard Hills NSW 2748

5017200153-AR1

Prepared for HB+B Property 10/06/2020

Contact Information Document Information

Construction Sciences Pty Ltd Prepared for HB+B Property

ABN 74 128 806 735 Project Name Proposed Warehouse Development 221-227,

289-317 Luddenham Road Orchard Hills

NSW 2748

Telephone: + 612 8646 2000 File Reference 5017200153-AR1
Facsimile: + 612 8646 2025 Job Reference 5017200153-AR1

Date 10/06/2020

www.constructionsciences.net

Seven Hills, NSW, 2147

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
Α	1/06/2020	Final	Nicholas Leong	Vipul de Silva
AR1	10/06/2006	Minor Editorial Comments	Nicholas Leong	Vipul de Silva

This document is produced by Construction Sciences solely for the benefit and use by the client in accordance with the terms of the engagement. Construction Sciences does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

[©] Construction Sciences 2018. Copyright in the whole and every part of this document belongs to Construction Sciences and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Construction Sciences.

Table of Contents

1	Introduction			
2	Site I	1		
3	Field	work	2	
4	Labo	oratory Test Results	3	
5	Discu	ussion and Recommendations	5	
	5.1	Soil Salinity	5	
	5.2	Exposure Classification	5	
	5.3	Pavement Design	8	
	5.4	Excavation	10	
	5.5	Earthworks	10	
	5.6	Community Building Footings	10	
	5.7	Surface and Groundwater	11	
6	AS28	370 Site Classification	12	
7	Closu	ure	12	
8	References			

Appendices

Appendix A NOTES AND LIMITATIONS

Appendix B SUBSURFACE LOGS AND SITE PLAN

Appendix C LABORATORY TEST RESULTS

1 Introduction

As requested, Construction Sciences Pty Ltd (CS) has carried out a geotechnical study at 221-227, 289-317 Luddenham Road Orchard Hills NSW 2748 . This report has been prepared to assist the Planning Proposal submission an any future Development Applications across the site. The report content covers preliminary pavement thickness design for subdivision roads, interim AS2870 Classifications and preliminary foundation design recommendations for the proposed warehouse structures.

2 Site Description and Geology

Reference to the Penrith, 1:100,000, Geological Series Sheet indicates the site is underlain by Wianamatta Group Bringelly Shale (Twib), comprised of shale, carbonaceous claystone, laminite, lithic sandstone, rare coal.

The site is bounded by Patons Lane to the north, Luddenham Road to the east, residential property to the south and an open paddock to the south. At the time of the fieldwork, the site was observed to have undulating terrain throughout with a trending slope of 1° toward the south. Vegetation consisted of predominantly grass ground cover with scattered pockets of tall grass throughout the site. Tall trees were also found throughout the site. Three dams were present on the southern half of the site. Occupied residential properties were also found on site.

A general overview of the site is shown in Photo 1 and Photo 2 below.

Photo 1: General Site Overview Facing southeast

Photo 2: General Site Overview Facing south

3 Fieldwork

Fieldwork was carried out from the 4th May 2020 to 8th May 2020 and comprised of 79 test pits spread across the site. The test pits were excavated to a maximum depth of 2.0m using a 5.5t Excavator with a 300mm bucket.

The fieldwork was carried out by an Engineering Geologist from CS, who selected test locations, carried out sampling and compiled engineering logs of the profiles encountered.

Dynamic Cone Penetrometer (DCP) tests were carried out adjacent to selected test pits to aid the assessment of subsurface soil strength.

Approximate test pit locations are shown on the attached Site Plan, ref: 5017200153-AR1-1 and 2presented in Appendix B.

The subsurface soil profiles encountered in the boreholes are summarised in Table 1 below. Reference should be made to the attached borehole logs for a more detailed description of soils encountered at a particular location.

4 Subsurface Conditions

The subsurface conditions found in the test pits TP1-TP79 are summarised in Table 1 below. Reference should be made to test pit logs included in Appendix B.

Table 1: Summary of Subsurface Profile

Layer/Description	Depth to Base of Layer (m)
TOPSOIL: SILT / Gravelly SILT/ Gravelly SAND / Silty CLAY/ Sandy SILT/ Silty Gravelly SAND	0.0 to 0.3
ASPHALT	0.0 to 0.01
FILL: Gravelly SAND / Gravelly SILT / Silty CLAY	0.0 to 1.0
RESIDUAL: CLAY, Silty CLAY, Sandy CLAY, Clayey SAND and Clayey GRAVEL low to high plasticity, brown mottled grey red to brown, stiff to hard	0.2 to >2.0
WEATHERED ROCK: SILTSTONE, pale grey, extremely weathered, low strength	
SANDSTONE, grey, high weathered, low strength	1.0 to >2.0
SHALE, grey, highly weathered, very low strength	

Groundwater was encountered in TP47 only during our investigation within the residual soil layer. It should be noted that field works were undertaken after a period of moderate rainfall, however, the depth to groundwater may vary in response to environmental factors including weather and seasonal change.

5 Laboratory Test Results

Laboratory testing comprised ten (10) California Bearing Ratio (CBR) tests to aid subgrade assessment for pavement thickness design. Sixty-five (65) Moisture Content tests and nine (9) Atterberg Limit Tests were also carried out to aid assessment and soil reactivity. One hundred and sixty-five (165) Ec/pH tests and ten (10) Chloride, Sulphate tests and twelve (12) CEC tests were carried out to aid assessment for soil exposure classification for durability of concrete and steel in ground. Laboratory test results are summarised in Table 2, Table 3 and Table 4 below.

Table 2: Summary of CBR Laboratory Test Results

Test Pit No.	Depth (m)	Material	FMC (%)	OMC (%)	MDD (t/m³)	CBR Swell(%)	CBR (%)
TP34	0.20-0.60	Clay, brown	6.8	16.0	1.68	5.0	2.0
TP39	0.20-0.50	Clay, red	15.5	16.5	1.66	3.5	4.5
TP44	0.20-0.60	Silty Clay, brown	17.8	21.0	1.55	3.0	5
TP47	0.20-0.60	Clayey Silt, brown	19.4	22.5	1.54	4.0	4.5

TP51	0.20-0.50	Clay, red	11.6	15.5	1.57	8.5	1.0
TP58	0.20-0.60	Clay, brown	13.5	16.0	1.71	3.5	4.5
TP61	0.20-0.60	Clayey Silt , brown	15.1	17.5	1.67	5.5	1.5
TP64	0.40-0.60	Silty Clay, brown	14.2	16.0	1.65	2.0	2.0
TP70	0.20-0.50	Clayey Silt, brown	21.0	27.5	1.53	11	11
TP80	0.20-0.60	Clay, red	17.3	20.0	1.63	2.0	2.0

Table 3: Summary of Atterberg Limit Test Results

Test Pit No.	Depth (m)	Material	LL (%)	PL (%)	PI (%)
TP15	1.40-1.50	Silty Clay , grey	68	20	48
TP16	0.40-0.50	Clay, mottled red	66	20	46
TP20	0.20-0.30	Sandy Clay, brown	36	14	22
TP24	0.40-0.50	Clay, red	80	23	57
TP38	1.40-1.50	Silty Clay, grey	71	21	50
TP54	0.40-0.50	Silty Clay brown	59	21	38
TP66	0.40-0.50	Clay, brown	71	24	47
TP74	1.40-1.50	Clay, grey	70	21	49
TP80	0.20-0.30	Clay, red	75	23	52

Table 4: Summary of Geochemical Laboratory Test Results

Test Pit No.	Depth (m)	рН	Ec (µS/cm)	FMC (%)	Chloride (Cl) (mg/kg)	Sulphate (SO ₄) (mg/kg)	CEC (meq/100g)
TP05	1.30-1.50	5.8	72		51	12	13
TP11	0.40-0.50	5.8	53	21	71	19	13
TP13	0.40-0.50	4.9	200	21			16
TP32	0.00-0.20	5.9	31	15	12	<10	5.5
TP34	0.20-0.3	5.2	220	21	320	280	12
TP54	1.40-1.50	5.2	250		270	35	21
TP60	0.40-0.50	6.0	81		16	36	14
TP67	1.40-1.50	4.2	760	17	1900	<10	6.7
TP70	0.40-0.50	5.4	40	30			8.5
TP72	0.40-0.50	5.7	48	19	28	50	
TP73	1.40-1.50	5.7	29	14			9.1
TP79	1.10-1.20	5.6	39	11	32	26	
TP80	1.40-1.50	5.4	89	14	93	40	
TP80	1.90-2.00	5.4	79	13			16

Electrical Conductivity (EC) and pH results are included Attachment B. Laboratory test reports are included in in Appendix C. A table of Ec and pH values along with exposure classification of all samples tested is included in Attachment 1 in Appendix C.

6 Discussion and Recommendations

6.1 Soil Salinity

Soil salinity was assessed based on electrical conductivity (Ec) of 1:5 (by mass) soil: water suspension and multiplying by a factor depending upon textural classification of soil to assess the electrical conductivity of pore water within the soil mass when it saturated (Ec). A salinity scale has been adopted for the site salinity rating. The salinity scale adopted is given below:

Salinity Classification	Ec dS/m
Non Saline (NS)	0 – 1.99
Slightly Saline (SS)	2.0 - 3.99
Moderately Saline (MS)	4.0 - 7.99
Very Saline (HS)	8.0- 15.0
Highly Saline	>15.0

One hundred and sixty-five (165) salinity samples from test pits (TP01 to TP80) were collected from 4th May 2020 to 8th May 2020 during the geotechnical investigation are shown on the attached Drawings 5017200153-A-1 and 2. Samples were collected from depths of 0.5m, 1.0m, 1.5m and 2.0m intervals. The test results are shown in Attachment B and summarised in Table 2 below

Table 5: Salinity Distribution Table

Salinity Rating	No. of Sampled	Percentage %
Non Saline	96	58.2
Slightly Saline	42	25.5
Moderately Saline	26	15.8
Very Saline	1	0.6

It is seen that a substantial area contains moderately saline soils. A Salinity Management Plan may be required prior to undertaking earthworks, construction of infrastructure and proposed buildings.

6.2 Exposure Classification

Sulphate content in the samples ranged from <10mg/kg to 280mg/kg.

Chloride content of the samples tested ranged from 12mg/kg to 1900mg/kg.

Cation Exchange capacity (CEC) ranged from 5.5meq/100g to 21meq/100g

Residential lots are rated in accordance with Electrical Conductivity of saturated pores (Ec_e) based on the following basis. (Refer table 5.1 AS2870-2011).

Table 6: Exposure Classification for concrete in Saline Soils

Electrical Conductivity Ec _e (dS/m)	Exposure Rating
0 - <4	A 1
4 - <8	A2
8 - <16	B1
>16	B2

In addition, the exposure classification is also based on soil pH for sulphate soils and sulphate content. The relevant parameters are reproduced in Table 7:

Table 7: Exposure Classifiation for concrete in Sulfate Soils

Sulfate Content in soil (ppm)	рН	Exposure class in Soil A	Exposure class in Soil B
<5000	>5.5	A2	A1
5000-<10000	4.5-<5.5	B1	A2
10000-<20000	4.0-<4.5	B2	B1
>20000	<4	C2	B2

Note:

Soil A: Sands and gravels under groundwater table.

Soil B: All soils above groundwater table and silt and clay below groundwater table.

Table 5 of AS2870-2011 specifies concrete strength for various exposure classifications for residential footings. It may be noted that the concrete strength specified for residential footings, which are essentially shallow footings, are different to those specified in AS2159-2009 for piles.

Table 8: Exposure Classifiation rating

Electrical Conductivity Ec _e (dS/m)	Minimum Concrete Strength (MPa)
A1	20
A2	25
B1	32
B2	40
C1 and C2	50

Soil pH was measured in One hundred and sixty-five (165) soil samples and the results ranged from 3.7 to 7.1. Vvalues ranging from (pH>4.5 to pH≤5.5) are considered "mild" and values >5.5 are considered "non-aggressive" in terms of exposure classification for concrete in accordance with AS 2159-2009, Piling Code.

The highest concentration of sulphate and chloride was assessed to be 280 mg/Kg(ppm) and 1900mg/kg (ppm). AS2159 indicates that sulphate content up to 5000ppm is considered to be non-aggressive to concrete members in ground and chloride content up to 5000ppm is considered to non-aggressive to steel structures in ground.

Based on the above, all samples tested would be rated as Exposure classification A1 or A2.

The above exposure ratings are for standard footings designed in accordance with AS 2870-2011. If deeper pier footings are proposed, site specific geotechnical investigations may be required to assess exposure classifications.

6.3 Salinity Management

The following salinity management aspects may be undertaken during the development of the subdivision.

- An erosion and Sediment Control Plan must be developed by the appointed earthworks contractor and implemented in accordance with the NSW Department of Housing document "Managing Urban Stormwater: Soils and Construction" (1998).
- All sediment and erosion controls by the plan are to be installed prior to excavation/site stripping.
- The programming of development road works and major excavations should minimise the time of soil exposure and should also be planned for times where rainfall is not forecasted.
- Locate moderately and highly saline soils areas on site and clearly flag out. Excavation in these
 areas should follow recommendations in this report.
- Avoid water collecting in low lying areas, depressions, behind fill embankments or near trenches
 on the uphill sides of the roads. This can lead to water logging of the soils, evaporate
 concentrations of the salts, eventual breakdown in soil structure, resulting in accelerated erosion.
- Preferably design the surface water drainage system for the subdivision to coincide with preexisting drainage pathways, thus minimising the disruption of existing surface water flows. Avoid filling or blocking preferential drainage pathways. Piping can be used to maintain drainage lines.
- Where possible materials used for roads and fill embankments should be selected to contain minimal or no salts. Where the use of potentially moderately saline soils is unavoidable, such soil should be capped with coarser grained topsoil (loam), sandy materials or crushed rock. These measures are designed to reduce the potential for scour and limit capillary rise of moisture.
- All excavation batters exposing moderately saline soils should be appropriately surfaced as soon
 as possible after formation. Surfacing can include topsoil, turf, planting, crushed rock or similar
 measures that will reduce the potential for scour.
- Surface drains should generally be provided along the top of all batters to reduce the potential for
 concentrated flows of water down slopes, possibly causing scour. Well graded subsoil drainage
 should be provided at the base of all slopes where there are road pavements below the slope, to
 reduce the risk of waterlogging.
- All proposed imported fill should be verified by sampling and testing to ensure the material is non
 to slightly saline. Moderately saline soil is not considered acceptable. Supporting information and
 documentation should be supplied verifying that the subject material complies.
- At locations of deep excavations, it may be possible for groundwater to seep through fractures and joints in the shale bedrock, which will potentially be exposed in such excavations. To counter the potential impacts of salts and ions carried on the seepage water, the following additional measures are recommended:
- Grade the ground surface away from the base of the cutting to be collected by the surrounding sub surface drains.
- Provide additional sub surface drainage at the toe of the cutting to collect seepage water.

- Maintain the drainage system on a regular basis to ensure water flows freely, reducing the risk of future build-up of salts or mineral staining e.g. Iron.
- Cut areas with moderately to highly saline soils within the depth of cut should be identified and marked on site.
- Site sourced materials from moderately or highly saline cut areas should be filled below 1.0m from Finished Surface Level (FSL). The top 1m of filling should be carried out with site won or imported VENM material that has a salinity rating of non to slightly saline.
- All concrete structures in contact with saline soils (MS or above) should be constructed with 40MPa concrete and 30mm cover.

This Salinity Management aspects should be included in earthworks specifications and implemented by the earthworks contractor in consultation with the geotechnical consultant.

For moderately saline soil, the following construction measures should be adopted during construction of buildings as part of salinity management:

- For slab on ground construction, a layer of bedding sand of at least 50mm thickness below the slab should be provided. This will permit free drainage of water beneath the slab, minimising the possibilities of pooling or trapping water that might potentially be carrying salts.
- A high impact damp proof membrane, not just a vapour proof membrane, should be laid under any
 ground bearing slab. The damp proof membrane should be extended to the outside face of the external
 edge beam up to the finished ground level.
- A minimum 32 MPa and 40 MPa concrete or a sulphate resisting cement with a water cement ratio no greater than 0.5, should be used for ground bearing slabs, footings, piers or beams for sites with exposure classification B1 and B2 respectively.
- The minimum cover to reinforcement must be 50mm from unprotected ground and 30mm from a membrane in contact with the ground.
- Slabs must be vibrated and cured for at least seven days. Over vibration of concrete can cause segregation of concrete aggregates, this should be avoided.
- Water should not be permitted to pond against the walls of any new structures. Surrounding pathways and parking areas should be sloped as to drain the surface water away from external walls.
- · Brickwork should be of exposure grade as required in the Building Code of Australia

6.4 Pavement Design

The proposed subdivision roads may be classified as local roads. In accordance with the Penrith City Council's design specification for Pavement Design recommendations a DESA (design equivalent standard axles) value of 1x10⁷ was adopted commercial/industrial roads.

In-situ CBR results interpreted using Dynamic Cone Penetration (DCP) tests ranged from less than 2% to about 17.5% for the depth range 0.2-0.6m.

Laboratory soaked CBR test results ranged from 1.0% to 11%. It is also noted that the field moisture content is up to 9.2% dry of Standard Optimum Moisture Content.

Based on the above, it is recommended that subgrade improvement be required. The following options may be employed:

Option 1.

In situ stabilisation of subgrade with 3% of hydrated lime to not less than 300mmmm depth. This would require about 8kg /m2. Pavement can be designed based on CBR3%. The depth of subgrade replacement should be assessed based on the pavement profile adopted.

Option 2

Subgrade replacement to not less than 300mm depth below the design subgrade level. The depth of subgrade replacement should be assessed by a geotechnical consultant at the time of construction. Select subgrade materials should have minimum CBR 10%. Pavement may be designed based on CBR3%.

It may be possible that the required subgrade compaction (100% Standard) may not be achieved in either of the above options. Deeper excavation and replacement or deeper stabilisation or both may be required if deflecting ground is encountered. Other stabilisation options may include placement of deeper granular layer and or geogrids.

Table 4 below presents the recommended pavement thickness design for the proposed Heavy Industry Access Roads in accordance with Austroads (2017) Guide to Pavement Technology Part 2 Pavement Structural Design and the requirements of Penrith City Council.

Table 9: Pavement Thickness Design

Pavement Type	Design CBR (%)	ESA	Layer	Thickness (mm)
			AC10 (Pavement Surfacing)	50
			Base (DGB20 or similar)	160
			Sub-base 2 (DGS or similar)	200
Heavy Industry Access Road	1.0	1x10 ⁷	Subbase 1- Crushed sandstone or other Council approved material	240
			Select Subgrade or 3% lime stabilised subgrade compacted to 100% Standard Compaction	
			Total Pavement Thickness	650

Note:

The above pavement profile may be used for preliminary costing and assessment of earthworks volumes only. It is highly recommended that a detailed pavement design should be carried out using CIRCLY software once the subgrade conditions are assessed in detail.

If another DESA value is to be used, or required by the Penrith City Council, CS should be contacted and the pavement thickness design can be revised.

It is recommended that a Geotechnical Engineer from CS inspect the subgrade following stripping and prior to laying of pavement material. This is to confirm the above pavement thickness designs are suitable.

For the sections of pavement that were subject to fill placement, the placed fill material must have a CBR value equal to or greater than the design CBR value used for the proposed carparks pavement thickness design.

Pavement and subgrade layer should be compacted to the following minimum dry density ratios (AS 1289 5.4.1) during construction.

Base 98% Modified
Subbase 98% Modified
Subgrade/Select fill 100% Standard

¹ Impact of turning or stopping vehicles at end of pavement or intersections not included in assessment.

At the time of sampling, the field moisture content of the in-situ subgrade material was dry of standard optimum moisture content (SOMC). Subgrade improvement as discussed above may be required in order to achieve a no- deflecting pavement subgrade prior to placement of pavement layers.

It is recommended that pavement construction be targeted to a dryer period if practical.

6.5 Excavation

No major bulk excavation is expected as part of the proposed development. However, should shallow excavations (<1.5m) be required, they will mainly encounter CLAY soils. Excavation within the soils would be achievable using conventional earthmoving equipment (i.e. hydraulic excavator bucket).

Care should also be taken to ensure that there is no surcharge from stockpiled materials and building or vehicular loads near the crest of excavations.

Temporary excavation batters to 1.5m depth may be carried out no steeper than 1Horizontal:1Vertical due to the presence of firm to stiff residual CLAY layers.

Long term excavation batters to 1.5m depth may be carried out no steeper than 3Horizontal :1Vertical.

When encountered extremely weathered rock, batters to 1.5m depths may be carried out no steeper than 1Horizontal: 1Vertical.

6.6 Earthworks

All earthworks should be carried out following removal of unsuitable materials (e.g. uncontrolled fill, topsoil etc) in accordance with AS3798-2007. A qualified geotechnical engineer should inspect the condition of the exposed material to assess suitably of the prepared surface as a foundation for fill placement.

Prior to any placement of any structural fill, should it be required, the site should be proof rolled using a medium weight vibrating pad foot roller. Should isolated soft/loose/deflecting areas be encountered during this process, this material should be removed and replaced with select fill.

Measures should be adopted to ensure that clay fill material is moisture conditioned to within +/- 2% of Standard OMC and not allowed to dry out prior to the placement of succeeding layers and final covering.

It is recommended that the placement of all structural fill be inspected, tested and certified by suitably qualified geotechnical engineer or geotechnician to Level 1 requirements in accordance with AS3798-2007 during the earthworks operations to ensure that all fill is placed in a 'controlled manner'..

Earthworks compliance testing should be carried out in accordance with Table 8.1 of AS3798 (2007), with testing to be provided by a NATA accredited testing authority. General fill should be compacted to a minimum 95% Standard within the moisture content range noted above, increasing to a minimum 100% Standard over the final 300mm to design level under pavements.

Due to the presence of high plasticity and high reactivity clay, it is recommended that all imported fill should be sources from non-reactive or slightly reactive sources such as ripped sandstone or shale, preferably with Liquid Limit less than 60%.

Lot fill should be compacted to density ratio between 98% and 102% with placement moisture content between 2% wet and 2% dry of Standard Optimum Moisture Content.

Due to the large volume of earthworks involved, it is recommended that earthworks specification be prepared and, earthworks should be subjected to geotechnical auditing based on earthworks specifications.

6.7 AS2870 Classification and Warehouse Building Footings

Based on the DCP test result, the allowable bearing pressure (ABP) in the upper 1m depth of soil where residual CLAY soils was encountered, is assessed to be about 100kPa.

Australian Standard 2870-2011 'Residential Slabs and Footings' has been utilised in assessing subsurface reactivity due to changes in moisture. Based on the Field Moisture and Atterberg Limits test results on the recovered soil samples, it is assessed that the site is generally underlain by moderately reactive soil, meaning

it is prone to volume change with changes in soil moisture content. A Shrink/Swell Index in the range of 2.5% to 4.0%has been assigned for the residual and fill soils.

The reactivity was assessed using a crack depth of 0.9m, a change of suction at the surface of 1.2pF and a suction depth of 1.8m. Based on the above, the site classification in accordance with AS2870-2011 "Residential Slabs and Footings" would be M or H1 prior to earthworks. Class M and H1 sites would experience a surface movement up to 40mm and 60mm respectively.

For the proposed warehouse building, shallow footings, such as pads and strips footings may be founded on the 'stiff' residual CLAY at 0.6m depth or below. Alternatively, high level footings may be placed on controlled fill, provided earthworks are carried out in accordance with the recommendations in this report. Footings on controlled fill may be proportioned for a maximum allowable bearing pressure of 100kPa to 150kPa depending upon the fill materials used and the depth of controlled fill below the base of the footing.

However, filling in excess of 300mm depth using clay fill would require re classification. If reactive (moderately or high) fill is used, the benefit of the cracked zone would disappear and the site may become H1 or higher (H2) classification.

In order to avoid site returning H2 and E (Extremely reactive) classification, imported fill should be sourced from non/ slightly reactive sources.

Piers, if required, may be designed for the following allowable end bearing and shaft adhesion values as follows:

- Shallow Piers: 100kPa with no added shaft adhesion and 15kPa in uplift in clay only.
- Deeper Piers: 300kPa allowable end bearing when founded in very stiff to hard Sandy CLAY at an embedment of not less than five times the pier diameter and an allowable shaft adhesion of 25kPa in compression and 15kPa in uplift.
- Piers in weathered roc with allowable end bearing pressure of 700kPa and ultimate shaft friction of 50kPa within the socket depth.

All footings should be inspected by a geotechnical engineer and constructed with minimal delay following excavation. The geotechnical engineer is to confirm that the encountered conditions satisfy design assumptions and that the base of all excavations are free from loose or softened material and water prior to pouring of concrete.

6.8 Surface and Groundwater

It is considered likely that shallow excavations, should they be required, will intercept the groundwater or seepage flows. Should seepage or adverse soil moisture condition be encountered during construction, further geotechnical advice should be sought.

7 Closure

This report should be read in conjunction with the attached General Notes and Limitations.

Please do not hesitate to contact the undersigned if you have any queries or require further assistance.

For and on behalf of Construction Sciences Pty Ltd

Report prepared by:

Reviewed by:

Nicholas Leong Engineering Geologist

Vipul de Silva Principal Geotechnical Engineer

8 References

Australian Standard 1289.6.3.2 (1997) Determination of the penetration resistance of a soil - 9kg dynamic cone penetrometer test.

Australian Standard 1726 (2017) Geotechnical site investigations.

Australian Standard 2870-2011 'Residential Slabs and Footings'

Australian Standard 3798-2007 'Guidelines on earthworks for commercial and residential developments'

Austroads 2017 - Guide to Pavement Technology Part 2: Pavement Structural Design

Proposed Warehouse Development 221-227, 289-317 Luddenham Road Orchard Hills NSW 2748

APPENDIX

NOTES AND LIMITATIONS

Important Information about this Geotechnical Report

Scope of Work

The purpose of this report and any associated documentation is expressly stated in the document. This document does not form a complete assessment of the site, and no implicit determinations about Construction Sciences scope can be taken if not specifically referenced. Whilst this report is intended to reduce geotechnical risk, no level of detail or scope of work can entirely eliminate risk.

The nature of geotechnical data typically precludes auxiliary environmental assessment without undertaking specific methods in the investigation. Therefore, unless it is explicitly stated in the scope of work, this report does not provide any contamination or environmental assessment of the site or adjacent sites, nor can it be inferred or implied from any component of the document.

The scope of work, geotechnical information, and assessments made by Construction Sciences may be summarised in the report; however, all aspects of the document, including associated data and limitations should be reviewed in its entirety.

Standard of care

Construction Sciences have undertaken investigations, performed consulting services, and prepared this report based on the Client's specific requirements, data that was available or was collected, and previous experience.

Construction Sciences findings and assessment represent its reasonable judgment, diligence, skill, with sound professional standards, within the time and budget constraints of its commission. No warranty, expressed or implied, is made as to the professional advice included in this report.

Data sources

In preparing this document, or providing any consulting services during the commission, Construction Sciences may have relied on information from third parties including, but not limited to; sub-consultants, published data, and the Client including its employees or representatives. This data may not be verified and Construction Sciences assumes no responsibility for the adequacy, incompleteness, inaccuracies, or reliability of this information.

Construction Sciences does not assume any responsibility for assessments made partly, or entirely based on information provided by third parties.

Variability in conditions and limitations of data

Subsurface conditions are complex and can be highly variable; they cannot be accurately defined by discrete investigations. Geotechnical data is based on investigation locations which are explicitly representative of the specific sample or test points. Interpretation of conditions between such points cannot be assumed to represent actual subsurface information and there are unknowns or variations in ground conditions between test locations that cannot be inferred or predicted.

The precision and reliability of interpretive assessment between discrete points is dependent on the uniformity of the subsurface strata, as well as the frequency, detail, and method of sampling or testing.

Subsurface conditions are formed by various natural and anthropogenic processes and therefore are subject to change over time. This is particularly relevant with changes to the site ownership or usage, site boundary or layout, and design or planning modifications. Aspects of the site may also not be able to be determined due to physical or project related constraints and any information provided by Construction Sciences cannot apply following modification to the site, regulations, standards, or the development itself.

It is important to appreciate that no level of detail in investigation, or diligence in assessment, can eliminate uncertainty related to subsurface conditions and thus, geotechnical risk. Construction Sciences cannot and does not provide unqualified warranties nor does it assume any liability for site conditions not observed or accessible during the investigations.

Verification of opinions and recommendations

Geotechnical information, by nature, represents an opinion and is based extensively on judgment of both data and interpretive assessments or observation. This report and its associated documentation are provided explicitly based on Construction Sciences opinion of the site at the time of inspection, and cannot be extended beyond this.

Any recommendations or design are provided as preliminary until verified on site during project implementation or construction. Inspection and verification on site shall be conducted by a suitably qualified geotechnical consultant or engineer, and where subsurface conditions or interpretations differ from those provided in this document or otherwise anticipated, Construction Sciences must be notified and be provided with an opportunity to review the recommendations.

Client and copyright

This document is produced by Construction Sciences solely for the benefit and use by the Client in accordance with the terms of the engagement. Construction Sciences does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Copyright in the whole and every part of this document belongs to Construction Sciences and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Construction Sciences.

Information About This Report

LIMITATIONS

Scope of Services: The report has been prepared in accordance with the scope of services set out in CS's Proposal under CS's Terms of Engagement, or as otherwise agreed with the Client. The scope of services may have been limited and/or amended by a range of factors including time, budget, access and site constraints.

Specific Purpose: The report is provided for the specific development and purpose as described in the report. The report may not contain sufficient information for developments or purposes other than that described in the report.

Currency of Information: The information in this report is considered accurate at the date of issue with regard to the current conditions of the site.

Reliance on Information: In preparing the report CS has necessarily relied upon information provided by the Client and/or their Agents. Such data may include surveys, analyses, designs, maps and plans. CS has not verified the accuracy or completeness of the data except as stated in this report.

Copyright and Reproduction: The contents of this document are and remain the intellectual property of CS. This document should only be used for the purpose for which it was commissioned and should not be used for other projects or by a third party. This report shall not be reproduced either totally or in part without the permission of CS. Where information from this report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimise the likelihood of misinterpretation.

Construction Specifications: Unless otherwise stated, the report, or sections of the report, should not be used as part of a specification for a project, without review and agreement by CS.

Report Should Not be Separated: The report must be read in conjunction with the attached Information Sheets and any other explanatory notes and should be kept in its entirety without separation of individual pages or sections.

Review by Others: CS cannot be held responsible for interpretations or conclusions from review by others of this report or test data, which are not otherwise supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

GENERAL NOTES

Geotechnical and Environmental Reporting: Geotechnical and environmental reporting relies on the interpretation of factual information based on judgment and opinion and is far less exact than other engineering or design disciplines. Geotechnical and environmental reports are for a specific purpose, development and site as described in the report and may not contain sufficient information for other purposes, developments or sites (including adjacent sites) other than that described in the report.

Subsurface Conditions: Subsurface conditions can change with time and can vary between test locations. For example, the actual interface between the materials may be far more gradual or abrupt than indicated and contaminant presence may be affected by spatial and temporal patterns. Therefore, actual conditions in areas not sampled may differ from those predicted since no subsurface investigation, no matter how comprehensive, can reveal all subsurface details and anomalies. Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations can also affect subsurface conditions and thus the continuing adequacy of a geotechnical report. CS should be kept informed of any such events and should be retained to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Groundwater: Groundwater levels indicated on borehole and test pit logs are recorded at specific times. Depending on ground permeability, measured levels may or may not reflect actual levels if measured over a longer time period. Also, groundwater levels and seepage inflows may fluctuate with seasonal and environmental variations and construction activities.

Interpretation of Data: Data obtained from nominated discrete locations, subsequent laboratory testing and empirical or external sources are interpreted by trained professionals in order to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions in accordance with any relevant industry standards, guidelines or procedures.

Soil and Rock Descriptions: Soil and rock descriptions are based on AS 1726 – 2017, using visual and tactile assessment except at discrete locations where field and / or laboratory tests have been carried out. Refer to the accompanying soil and rock terms sheet for further information.

Further Advice: CS would be pleased to further discuss how any of the above issues could affect a specific project. We would also be pleased to provide further advice or assistance including:

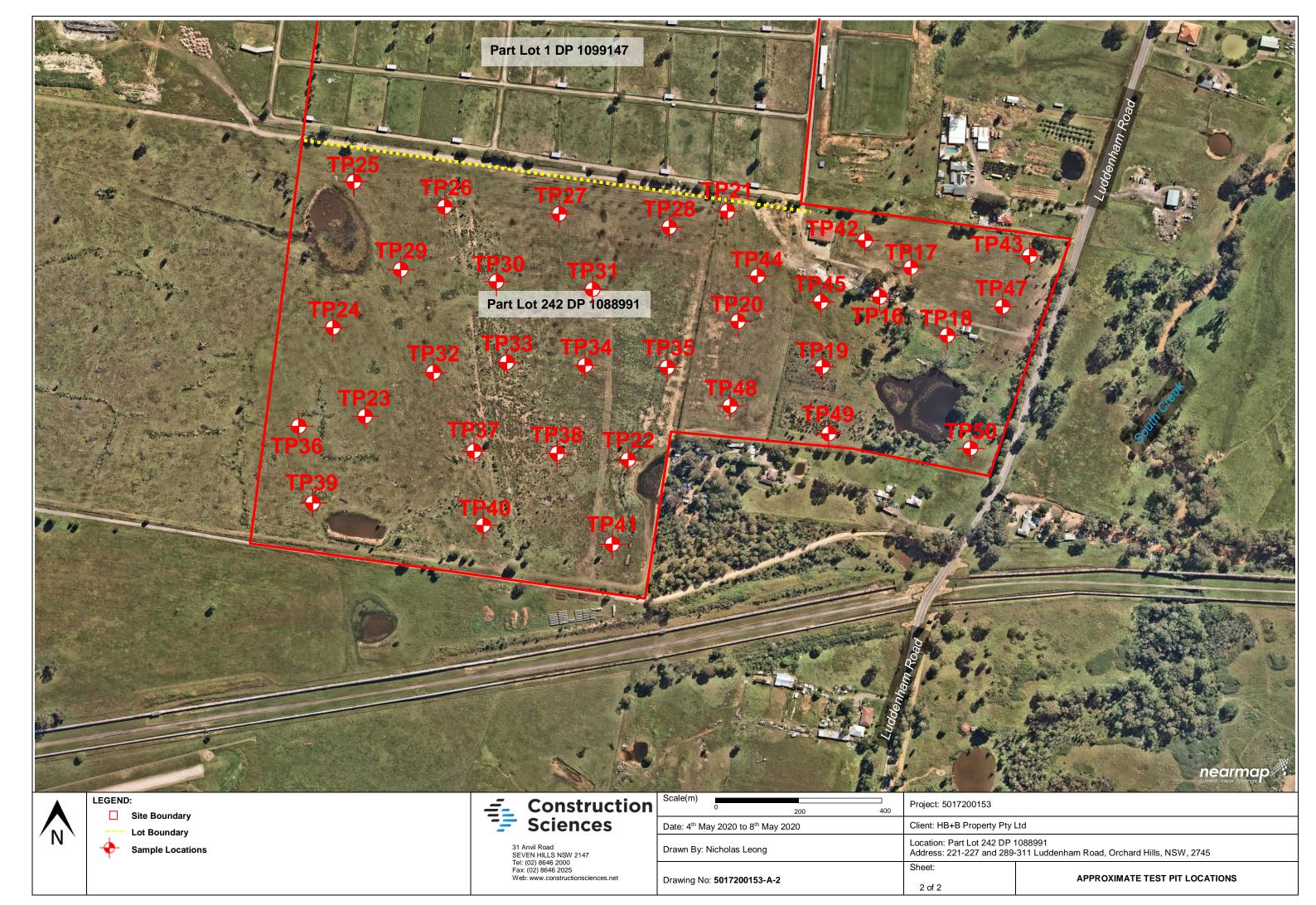
- Assessment of suitability of designs and construction techniques;
- Contract documentation and specification;
- Construction control testing (earthworks, pavement materials, concrete);
- Construction advice (foundation assessments, excavation support).

Proposed Warehouse Development 221-227, 289-317 Luddenham Road Orchard Hills NSW 2748

APPENDIX

B

SUBSURFACE LOGS AND SITE PLAN


Lot Boundary

Test Pit Locations

31 Anvil Road SEVEN HILLS NSW 2147 Tel: (02) 8646 2000 Fax: (02) 8646 2025 Web: www.constructionsciences.net

	The state of the s				
1	Scale(m) 200 400	Project: 5017200153			
	Date: 4 th May 2020 to 8 th May 2020	Client: HB+B Property Pty Ltd			
	Drawn By: Nicholas Leong	Location: Part Lot 1 in DP 1099147 Address: 221-227 and 289-311 Luddenham Road, Orchard Hills NSW 2745			
	Drawing No: 5017200153-A-1	Sheet: APPROXIMATE TEST PIT LOCATIONS 1 of 2			

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP01 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81810, 150.75232 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL ES 0.00 - 0.20 m SILT: low plasticity, brown (ID: TP01 0.00m - 0.20m) M (<PL) RESIDUAL SOIL CLAY: low plasticity, brown mottled grey and red 0.5 D 0.50 - 0.60 m M (<PL) $\stackrel{\sim}{\sim}$ VΗ Silty CLAY: low plasticity, grey mottled brown 1.0 M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP02 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.81840, 150.75362 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP02 0.00m - 0.20m) TOPSOIL SILT: low plasticity, brown, trace clay with crushed sandstone on surface RESIDUAL SOIL Silty CLAY: high plasticity, orange brown mottled red and grey 0.5 D 0.50 - 0.60 m Stable $\stackrel{\sim}{\sim}$ F M (≈PL) 1.0 D 1.40 - 1.50 m TERMINATED AT 1.50 m -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown

Refer to explanatory notes for details of abbreviations and basis of descriptions

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

water inflow

■ water outflow

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP03 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81913, 150.75632 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL ES 0.00 - 0.40 m Gravelly SILT: low plasticity, dark brown to brown, ironstone gravel (ID: TP03 0.00m - 0.20m) M (<PL) Clayey SILT: high plasticity, brown orange mottled grey and red RESIDUAL SOIL 0.5 D 0.50 - 0.60 m M (≈PL) F to St Stable $\stackrel{\sim}{\sim}$ F 1.0 CLAY: high plasticity, grey mottled brown orange M (≈PL) СН St grades: trace ironstone gravel D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE

Percussion sampler

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10:0.000 Datgel AGS RTA, Photo, Monitoring Tools

7.GLB

CS 2.01.

Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling AD/V AD/T HFA WB DT

WATER Water Level on Date shown

water inflow ■ water outflow Moisture Content

PRT Plate Bearing Test IMP - Borehole Impression Test PID Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)

Dry Moist Wet Plastic limit Liquid limit Moisture content

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP04 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81845, 150.75716 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m TOPSOIL SILT: medium plasticity, dark brown, with gravel (ID: TP04 0.00m - 0.20m) RESIDUAL SOIL Clayey SILT: high plasticity, brown orange mottled red and grey D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F Clayey SILT: medium plasticity, grey mottled red, with ironstone gravel 1.0 M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CS 2.01.7

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP05 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81847, 150.75958 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m TOPSOIL SILT: low plasticity, dark brown to brown, with gravel (ID: TP05 0.00m - 0.20m) RESIDUAL SOIL Clayey SILT: high plasticity, orange brown mottled grey red 0.5 D 0.50 - 0.60 m M (≈PL) Not Encountered Stable $\stackrel{\sim}{\mathsf{H}}$ Silty CLAY: high plasticity, grey mottled orange brown and red 1.0 M (≈PL) D 1.30 - 1.40 m WEATHERED ROCK SILTSTONE, pale grey, extremely weathered, low Н D TERMINATED AT 1.40 m Refusal 1.5 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10:0.000 Datgel AGS RTA, Photo, Monitoring Tools

7.GLB

CS 2.01.

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP06 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81968, 150.75408 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL ES 0.00 - 0.20 m (ID: TP06 0.00m - 0.20m) (ID: QC301) (ID: QC302) SILT: low plasticity, dark brown M (<PL) RESIDUAL SOIL Silty CLAY: medium plasticity, brown orange mottled 0.5 D 0.50 - 0.60 m Stable $\stackrel{\sim}{\sim}$ F grades: trace ironstone M (≈PL) F to St 1.0 grades: with ironstone D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VL

Refer to explanatory notes for details of abbreviations and basis of descriptions

shown

water inflow

■ water outflow

Photo, Monitoring Tools

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA,

7.GLB

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP07 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82007, 150.75182 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP07 0.00m - 0.20m) TOPSOIL SILT: low plasticity, brown RESIDUAL SOIL Silty CLAY: high plasticity, yellow brown grades: grey mottled yellow brown and pale red 0.5 D 0.50 - 0.60 m Stable $\stackrel{\sim}{\sim}$ F M (≈PL) 1.0 D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP08 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82045, 150.75693 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m SILT: low plasticity, dark brown 0.00 m: PID = 4.20ppm (ID: TP08 0.00m - 0.20m) Possibly ALLUVIUM SILT: medium plasticity, orange brown mottled red and grey, trace gravel 0.5 D 0.50 - 0.60 m M (≈PL) Stable $\stackrel{\sim}{\sim}$ F RESIDUAL SOIL CLAY: high plasticity, grey mottled brown 1.0 M (≈PL) St D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10:0.000 Datgel AGS RTA, Photo, Monitoring Tools

7.GLB

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP09 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Sheet: 1 of 1 Location: Job No: 5017200153 Position: -33.82109, 150.75498 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m Gravelly SAND: fine grained, poorly graded, rounded, brown, medium poorly graded rounded gravel 0.00 m: PID = 0.80ppm (ID: TP09 0.00m - 0.20m) RESIDUAL SOIL Clayey SILT: medium plasticity, brown orange mottled red 0.5 D 0.50 - 0.60 m Stable $\stackrel{\sim}{\sim}$ F M (≈PL) grades: grey mottled red 1.0 St grades: with ironstone gravel D 140 - 150 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak, Liquid limit Moisture content

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

Photo, Monitoring Tools

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA,

7.GLB

CS 2.01.

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Dense Very Dense

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP10 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82118, 150.75627 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP10 0.00m - 0.20m) SILT: low plasticity, brown 0.00 m: PID = 0.50ppm RESIDUAL SOIL Silty CLAY: high plasticity, brown СН M (≈PL) F to St CLAY: high plasticity, grey mottled brown red 0.5 D 0.50 - 0.60 m CH M (≈PL) St Stable $\stackrel{\sim}{\sim}$ F 1.0 Sandy CLAY: medium plasticity, grey mottled brown M (<PL) St D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal)

Ripper Hand auger Push tube Sonic drilling Air hammer AD/V AD/T HFA WB DT

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Water Level on Date shown water inflow ■ water outflow

Moisture Content Plate Bearing Test IMP - Borehole Impression Test

PID Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)

MOISTURE

Dry Moist Wet Plastic limit Liquid limit Moisture content Very Soft Soft Firm Stiff Very Stiff Hard

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP11 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82186, 150.75599 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP11 0.00m - 0.20m) SILT: low plasticity, dark brown 0.00 m: PID = 0.60ppm RESIDUAL SOIL Silty CLAY: medium plasticity, brown D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F 1.0 CLAY: high plasticity, grey mottled brown red, with 1.20 m: increasing ironstone content M (≈PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER PRT Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit Water Level on Date

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10:0.000 Datgel AGS RTA, Photo, Monitoring Tools 7.GLB CS 2.01.

AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Liquid limit Moisture content

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP12 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Sheet: 1 of 1 Location: Job No: 5017200153 Position: -33.18234, 150.75650 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP12 0.00m - 0.20m) SILT: low plasticity, dark brown, trace gravel 0.00 m: PID = 0.60ppm RESIDUAL SOIL Silty CLAY: medium plasticity, brown orange mottled red, trace gravel D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F F to St grades: grey mottled red 1.0 M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5

Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling AD/V AD/T HFA WB DT

METHOD

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

Hard Very Hard (Refusal) WATER Water Level on Date shown

Very Easy (No Resistance)

PENETRATION

water inflow ■ water outflow

FIELD TESTS SPT - Standard Penetration Test HP Hand/Pocket Penetrometer DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer

Moisture Content Plate Bearing Test IMP - Borehole Impression Test

PID Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa) Bulk disturbed sample Disturbed sample
Environmental sample
Thin wall tube 'undisturbed'

MOISTURE

SAMPLES

Dry Moist Wet Plastic limit Liquid limit Moisture content

SOIL CONSISTENCY Very Soft Soft Firm Stiff Very Stiff Hard VS S F

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

Sheet: 1 of 1

Location:

Sciences HB+B Property
Geotechnical Assessment, Proposed Industrial Land Development
221-227 and 289-317 Luddenham Road
Job No: 501720 Hole No: TP13 Project:

Job No: 5017200153

Position: -33.82344, 150.75349 Angle from Horizontal: 90° Surface Elevation:

Excavation Method: EX Machine Type: 5 tonne Excavator

				tonne Exca		ND 0	20m \/	IDE	Excavation Method: EX		Contra	ctor: Platinum Excavation
Excavation Dimensions: 1.50m LONG AND Date Excavated: 6/5/20 Excavation Sampling & Testing			ND U.	SUIII VV	IDE	Logged By: NL			ed By: VDS			
						Material Description			•			
Method	Resistance	Stability	Water		mple or ld Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture	Consistency Relative Density	STRUCTURE & Other Observations
A				ES 0.00 - 0.2 (ID: TP13 0.0	0 m 00m - 0.20m)	_	415 415 41 415 415 415 415 415 415 415 415 415 415 415 415 415 415 415		Silty CLAY: medium plasticity, dark brown	M (≈PL)		TOPSOIL 0.00 m: with grass roots PID = 0.80ppm
EX	F	Stable	Not Encountered	D 0.40 - 0.50	m	- 0.5		СН	CLAY: high plasticity, grey mottled brown grades: grey mottled red and brown orange	M (=PL)	St	RESIDUAL SOIL
,				D 1.40 - 1.50	m	1.5			1.50m TERMINATED AT 1.50 m Target depth			
						- -2.0 -						
						- -2.5 - -						
ME EX R HA PT SO AH PS AS	Ri Ha Pu N So Ai Pe	ccavato pper and augush tub onic dril r hammercussionort spi	ger e ling er on san	npler	PENETRATION VE Very Easy (N E Easy F Firm H Hard VH Very Hard (R WATER	efusal)		S H D P M	SAMPLES SAMPLES		ed sampl ample al sampl be 'undist	SOIL CONSISTENCY

Air nammer
Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling PS AS AD/V AD/T HFA WB DT CS 2.01.7.GLB Log CARDNO

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Dry Moist Wet Plastic limit Liquid limit Moisture content

VL

D VD

Very Loose Loose Medium Dense

Dense Very Dense

D M W PL LL

IMP - Borehole Impression Test PID - Photoionisation Detector

Water Level on Date

shown water inflow

■ water outflow

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP14 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82437, 150.75592 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP14 0.00m - 0.20m) SILT: low plasticity, dark brown 0.00 m: PID = 0.40ppm RESIDUAL SOIL CLAY: high plasticity, red to red mottled grey D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F M (<PL) St to VSt 1.0 CLAY: low plasticity, grey mottled red M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Excavator bucket
Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling
Diatube Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER Plate Bearing Test Dry Moist Wet Plastic limit

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

Water Level on Date

water inflow

■ water outflow

shown

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

RELATIVE DENSITY

Liquid limit Moisture content

Very Loose Loose Medium Dense VLDense Very Dense D VD

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP15 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82398, 150.75107 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP15 0.00m - 0.20m) TOPSOIL SILT: low plasticity, dark brown, trace gravel RESIDUAL SOIL CLAY: medium plasticity, grey mottled red and brown D 0.40 - 0.50 m 0.5 M (<PL) St Stable $\stackrel{\sim}{\sim}$ F 1.0 Silty CLAY: high plasticity, grey, trace ironstone M (≈PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer

Ripper Hand auger Push tube Sonic drilling Air hammer Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling AD/V AD/T HFA WB DT

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

Hard Very Hard (Refusal) WATER Water Level on Date

shown water inflow ■ water outflow PSP - Perth Sand Penetrometer Moisture Content Plate Bearing Test IMP

- Borehole Impression Test PID Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)

MOISTURE

Dry Moist Wet Plastic limit Liquid limit Moisture content Very Soft Soft Firm Stiff Very Stiff Hard

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP16 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82571, 150.75751 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.01 - 0.20 m (ID: TP16 0.00m - 0.20m) (ID: QC101) (ID: QC102) PAVEMENT FILL: Gravelly SAND: dark brown to brown, trace silt 0.01 m: PID = 0.50ppm D RESIDUAL SOIL CLAY: low plasticity, grey with brown streaks mottled red D 0.40 - 0.50 m 0.5 M (<PL) St Stable $\stackrel{\sim}{\sim}$ F D 0.90 - 1.00 m 1.0 Silty CLAY: medium plasticity, grey mottled red M (<PL) St D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER Percussion sampler PRT Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10:0.000 Datgel AGS RTA, Photo, Monitoring Tools

7.GLB

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP17 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82538, 150.75780 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP17 0.00m - 0.20m) SILT: low plasticity, dark brown to brown, trace 0.00 m: PID = 0.40ppm gravel PID = 0.4ppm RESIDUAL SOIL Silty CLAY: high plasticity, brown mottled red D 0.40 - 0.50 m 0.5 M (≈PL) F Stable Ξ D 0.90 - 1.00 m 1.0 Clayey SILT: low plasticity, grey mottled brown WEATHERED ROCK D 1.50 - 1.60 m SANDSTONE, grey, with ironstone gravel, low strength Н TERMINATED AT 1.60 m Target depth 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

Very Loose Loose Medium Dense VLDense Very Dense D VD

Liquid limit Moisture content

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP18 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82630, 150.75868 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP17 0.00m - 0.20m) FILL: Gravelly SAND: dark brown, with silt 0.00 m: PID = 0.40ppm М D 0.40 - 0.50 m grades: wet 0.5 Not Encountered w Stable $\stackrel{\sim}{\mathsf{H}}$ F Clayey GRAVEL: red mottled brown, ironstone gravel RESIDUAL SOIL D 0.90 - 1.00 m 1.0 GC М L D 1.30 - 1.40 m TERMINATED AT 1.40 m 1.5 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date AD/V AD/T HFA WB DT IMP - Borehole Impression Test Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawngFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

Sciences HB+B Property

Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location:

Job No: 5017200153

Hole No: TP19 Sheet: 1 of 1

Position: -33.82640, 150.75688 Angle from Horizontal: 90° Surface Elevation:

Excavation Method: EX Machine Type: 5 tonne Excavator

Excavation Dimensions: 1.00m LONG AND 0.30m WIDE Contractor: Platinum Excavation

Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP19 0.00m - 0.20m) Sandy SILT: low plasticity, dark brown, trace gravel 0.00 m: polypipe on surface PID = 0.10ppm

RESIDUAL SOIL CLAY: high plasticity, red mottled grey Not Encountered grades: with ironstone gravel, grey mttled brown orange Ξ F 0.5 СН M (≈LL) VSt to F TERMINATED AT 0.80 m 1.0

1.5

CS 2.01.7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools 2.0

METHOD Excavator bucket

Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler AD/V AD/T HFA WB DT

Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling

PENETRATION

-2.5

Very Easy (No Resistance) Hard Very Hard (Refusal)

WATER Water Level on Date

shown water inflow ■ water outflow FIELD TESTS

SPT - Standard Penetration Test HP Hand/Pocket Penetrometer DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer

Moisture Content Plate Bearing Test IMP - Borehole Impression Test PID Photoionisation Detector

Vane Shear; P=Peak, R=Resdual (uncorrected kPa) SAMPLES

Bulk disturbed sample Disturbed sample
Environmental sample
Thin wall tube 'undisturbed'

MOISTURE

Dry Moist Wet Plastic limit Liquid limit Moisture content SOIL CONSISTENCY VS

Very Soft Soft Firm Stiff Very Stiff Hard S F

RELATIVE DENSITY

Very Loose Loose Medium Dense VL Dense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP20 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82609, 150.75635 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.00m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.20 m (ID: TP20 0.00m - 0.20m) SILT: low plasticity, dark brown 0.00 m: with ceramic tiles, timber PID = 0.10ppm RESIDUAL SOIL D 0.20 - 0.30 m Sandy CLAY: low plasticity, brown mottled brown orange M (<PL) Silty CLAY: high plasticity, red mottled brown F Stable $\stackrel{\sim}{\sim}$ 0.5 M (≈PL) St grades: grey mottled pale brown TERMINATED AT 1.00 m 1.5 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VL shown PID Photoionisation Detector water inflow

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:35 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CS 2.01.7

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

Sheet: 1 of 1

Sciences HB+B Property Hole No: TP21 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Job No: 50172 Project: Location: Job No: 5017200153

Position: -33.82504, 150.75602 Angle from Horizontal: 90° Surface Elevation:

Machine Type: 5 tonne Excavator **Excavation Method: EX**

Excavation Dimensions: 1.00m LONG AND 0.30m WIDE **Contractor: Platinum Excavation**

Excavation Sampling & Testing				M			
bon Fi ri	_			Material Description			
Stability Stability Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
ES 0.00 - 0.30 m (ID: TP21 0.00m - 0.20m) (ID: TP21-ACM-0.30m) (ID: Asbestos sample)	-	## ### ### ### ### ### #### #### ######	CI	Sandy SILT: low plasticity, dark brown, trace clay 0.30m CLAY: medium plasticity, red mottled grey 0.50m	M (<pl)< td=""><td>F to St</td><td>TOPSOIL 0.00 m: with conrete, bricks and iron bar Abestos Containing Material at 0.30m PID = 0.20ppm RESIDUAL SOIL</td></pl)<>	F to St	TOPSOIL 0.00 m: with conrete, bricks and iron bar Abestos Containing Material at 0.30m PID = 0.20ppm RESIDUAL SOIL
	-0.5- - - -1.0 - - -1.5 - - -2.0 - - -2.5			TERMINATED AT 0.50 m Target depth			
R RIpper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AS Short spiral auger AD/V Solid flight auger: V-Bit AD/T Solid flight auger: TC-Bit H Hard VH Very Hal WATER WATER wat	(No Resistal (Refusal) er Level or		S H D P M P	P - Hand/Pocket Penetrometer	y oist et	S - Soft e F - Firm	
Refer to explanatory notes for details of abbreviations and basis of descriptions		СО	NS	STRUCTION SCIENCES			1

Sheet: 1 of 1

HB+B Property
Geotechnical Assessment, Proposed Industrial Land Development
221-227 and 289-317 Luddenham Road
Job No: 501720 Hole No: TP22

Location: Job No: 5017200153 Position: -33.82790, 150.75457 Angle from Horizontal: 90° Surface Elevation:

Machine Type: 5 tonne Excavator **Excavation Method: EX**

				nsions: 1.00m LONG A	ND 0.	30m W	IDE				ctor: Platinum Excavation		
			ed: 4	J/5/20	1			Logged By: NL		Checked By: VDS			
Exc	cavati	on		Sampling & Testing	-		_	Material [Description				
Method	Resistance	Stability	Water	Sample or Field Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle chara colour, secondary and minor compo ROCK TYPE, grain size and type, c fabric & texture, strength, weather defects and structure	onents significant	Consistency Relative Density	STRUCTURE & Other Observations		
A				ES 0.00 - 0.20 m (ID: TP22 0.00m - 0.20m)	-	415 415 415 415 415 415 415 415 415 415 415 415 415 415 415 415 415 415		Sandy SILT: low plasticity, brown	M (<pl)< td=""><td></td><td>TOPSOIL 0.00 m: PID = 0.20ppm</td></pl)<>		TOPSOIL 0.00 m: PID = 0.20ppm		
			Not Encountered		t		CL	0.20m Sandy CLAY: low plasticity, brown, coar graded rounded sand	se poorly M (<pl)< td=""><td></td><td>RESIDUAL SOIL</td></pl)<>		RESIDUAL SOIL		
EX	F	Stable	Not Enc		-0.5		СН	CLAY: high plasticity, brown mottled gre	y M (<pl) to M (=</pl) 	St			
					-		OII	0.70m	PL)				
								TERMINATED AT 0.70 m Target depth					
					-								
					-1.0								
					-								
					- - 1.5								
					-								
					-2.0								
					-								
					-2.5								
					-								
					-								
METHOD EX Excavator bucket R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AS Short spiral auger AD/T Solid flight auger: V-Bit AD/T Solid flight auger: TC-Bit AD/T Solid flight					efusal) Level on	SPT - Standard Penetration Test				D - Disturbed sample S Es - Environmental sample S S VSt			
HFA WB DT	A Ho Wa	llow fli	ght au e drillir	ger water ii			V	/S - Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	PL - Plastic limit LL - Liquid limit w - Moisture co	ntent	L - Loose MD - Medium Der D - Dense VD - Very Dense		
Refe	r to exp eviation	lanatory s and ba	notes fasis of d	or details of escriptions		CO	NS	STRUCTION SCIENCE	S				

Sheet: 1 of 1

Sciences Hole No: TP23

HB+B Property
Geotechnical Assessment, Proposed Industrial Land Development
221-227 and 289-317 Luddenham Road
Job No: 501720 Location: Job No: 5017200153 Position: -33.82748, 150.75128 Angle from Horizontal: 90° Surface Elevation:

Machine Type: 5 tonne Excavator **Excavation Method: EX**

L'	Excavation Dimensions: 1.00m LONG AND 0.30m WIDE												Contractor: Platinum Excavation			
L	Date	Exc	xcavated: 4/5/20						Logged By: NL				Checked By: VDS			
	Exc	cavation Sampling & Testing							Material Description							
	Method	Resistance	Stability	Water		ample or ield Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture	Consistency Relative Density	STRUCTURE & Other Observations			
f	1				ES 0.00 - 0 (ID: TP23 0	0.10 m 0.00m - 0.10m)		415 415 41 6 415 415 41		SILT: low plasticity, brown 0.10m	M (<pl)< td=""><td></td><td>TOPSOIL 0.00 m: PID = 0.30ppm</td></pl)<>		TOPSOIL 0.00 m: PID = 0.30ppm			
										CLAY: high plasticity, red mottled grey			RESIDUAL SOIL			
							_									
				untered			-		СН		M (≈PL)	St				
	- EX	F	Stable	Not Encountered			-0.5						-			
				_			_			0.60m CLAY: low plasticity, grey mottled pale brown						
							-		<u></u>							
									CL		M (<pl)< td=""><td>St to VSt</td><td></td></pl)<>	St to VSt				
-	V						-1.0-			1.00m TERMINATED AT 1.00 m						
							-			Target depth						
							_									
							_									
							- - 1.5						_			
Slool							1.5									
nitoring T							-									
hoto, Mc							-									
S RTA, F							_									
atgel AG							-2.0						-			
0.000																
15:36 10							-									
06/2020							-									
ile>> 01.							-2.5						-			
DrawingF							-									
GPJ <<[
33 LOGS.																
5017200153 LOGS.GPJ < <drawingfile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools</drawingfile>	ME	THOD				PENETRATION			F	ELD TESTS SAMPLES			SOIL CONSISTENCY			
CS 2.01.7.GLB Log CARDNO NON-CORED 50	METHOD EX Excavator bucket R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AS Short spiral auger: V-Bit AD/T Solid flight auger: TC-Bit HFA Hollow flight auger WB Washbore drilling DT Diatube PENETRATION VE Very Easy (No Resista E E Easy F FIrm H Hard (Nefusal) WH Very Hard (Refusal) WH Very Hard (Refusal) WATER WATER WATER Water Level of shown water inflow water outflow								S H D P M P	PT - Standard Penetration Test P - Hand/Pocket Penetrometer CP - Dynamic Cone Penetrometer SP - Perth Sand Penetrometer IC - Moisture Content BT - Plate Bearing Test ID - Borehole Impression Test ID - Photoionisation Detector S - Vane Shear; P=Peak, PD - Bull D - Photoionisation Detector S - Vane Shear; P=Peak, D - Dry M - Mo W - We PL - Plat LL - Liq	/ ist et istic limit	le VS - Very Soft S - Soft e F - Firm				
CS 2.01.7	Refe abbr	er to expreviation	lanatory s and ba	notes fasis of d	or details of escriptions			СО	NS	TRUCTION SCIENCES						

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP24 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82586, 150.75151 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator

Excavation Dimensions: 1.00m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure ES 0.00 - 0.40 m (ID: TP24 0.00m - 0.40m) SILT: low plasticity, dark brown, trace clay 0.00 m: with grass roots PID = 0.40m M (<PL) RESIDUAL SOIL CLAY: high plasticity, red mottled grey 0.30 m: PID = 0.30ppm D 0.40 - 0.50 m Stable $\stackrel{\sim}{\sim}$ F 0.5 grades: grey mottled brown СН M (≈PL) St to VS TERMINATED AT 1.00 m 1.5 7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE

Ripper Hand auger Push tube Sonic drilling Air hammer Percussion sampler AD/V AD/T HFA WB DT

WATER Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Water Level on Date shown water inflow ■ water outflow

Moisture Content

PRT Plate Bearing Test IMP - Borehole Impression Test PID Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)

Dry Moist Wet Plastic limit Liquid limit Moisture content RELATIVE DENSITY

Very Loose Loose Medium Dense VL Dense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

CS 2.01.7

HB+B Property

Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Job No: 50172 Location:

Hole No: TP25 Job No: 5017200153 Sheet: 1 of 1

Position: -33.87473, 150.75144 Angle from Horizontal: 90° Surface Elevation:

Machine Type: 5 tonne Excavator **Excavation Method: EX**

Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation**

Date				/5/20	DOTTI LONG A				Logged By: NL			ed By: VDS		
Ex	cavati	on		Samplir	ng & Testing		Material Description					•		
Method	Resistance	Stability	Water		mple or eld Test	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture	Consistency Relative Density	STRUCTURE & Other Observations		
A				ES 0.00 - 0.2 (ID: TP25 0.	20 m 00m - 0.20m)	_	412 412 41 4 412 412 41		Sandy SILT: low plasticity, dark brown	M (<pl)< td=""><td></td><td>TOPSOIL 0.00 m: ceramic, plastic, metal on surface PID = 0.50ppm</td></pl)<>		TOPSOIL 0.00 m: ceramic, plastic, metal on surface PID = 0.50ppm		
}		ole	Not Encountered			-0.5			CLAY: high plasticity, red brown mottled grey grades: grey mottles pale brown			RESIDUAL SOIL		
EX	F	Stable	Not E			- - -		СН	1.00m	M (≈PL)	F to St			
						- 1.0 -		CL	Sandy CLAY: low plasticity, grey mottled pale brown	M (<pl)< td=""><td>St to VSt</td><td></td></pl)<>	St to VSt			
,						-	////		TERMINATED AT 1.20 m Target depth					
						- 1.5								
						_								
						-2.0								
						_								
						-2.5 -								
						- -								
EX R HA PT SO AH PS AS AD/ HF/	R Ripper HA Hand auger PT Push tube SON Sonic drilling H Hard VH Very Hard (Refusal) WATER WATER Water Level on Date Shown HAD/T Solid flight auger: V-Bit AD/T Solid flight auger: TC-Bit HFA Hollow flight auger WB Washbore drilling VZ Very Lasy (W Nessadarce) E Easy F Firm VH Very Hard (Refusal) WATER WATER Water Level on Date shown water inflow water outflow							HP - Hand/Pocket Penetrometer DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer MC - Moisture Content PBT - Plate Bearing Test D - Disturbe ES - Environ U - Thin wa MOISTURE D - Dry				tic limit		
				or details of escriptions			CO	NS	TRUCTION SCIENCES					

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP26 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82484, 150.75247 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure SILT: low plasticity, dark brown M (<PL) RESIDUAL SOIL CLAY: high plasticity, grey mottled red M (≈PL) D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F St grades: less moist 1.0 M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date AD/V AD/T HFA WB DT IMP - Borehole Impression Test Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

Photo, Monitoring Tools

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA,

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP27 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82481, 150.75399 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, grey mottled red and brown orange, trace ironstone gravel D 0.40 - 0.50 m -0.5 Stable $\stackrel{\sim}{\sim}$ F ξ M (≈PL) St 1.0 grades: grey mottled red D 140 - 150 m TERMINATED AT 1.50 m 1111 1111 \perp \perp +111-2.5 ++++I I I I \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler PRT Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

Photo, Monitoring Tools

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:39 10.0.000 Datgel AGS RTA,

CS 2.01.7

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP28 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82509, 150.75517 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown RESIDUAL SOIL Clayey SAND: brown, low plasticity clay SC CLAY: high plasticity, red mottled grey D 0.40 - 0.50 m 0.5 M (≈PL) St F Ξ CH 1.0 grades: grey mottled brown orange, low plasticity M (<PL) St to VSt D 140 - 150 m TERMINATED AT 1.60 m Target depth 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content

GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA,

Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling AD/V AD/T HFA WB DT

WATER Water Level on Date shown water inflow

■ water outflow

Plate Bearing Test IMP - Borehole Impression Test PID Photoionisation Detector

Vane Shear; P=Peak, R=Resdual (uncorrected kPa)

Dry Moist Wet Plastic limit Liquid limit Moisture content RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP29 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82565, 150.75196 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, grey mottled brown D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ M (≈PL) 1.0 WEATHERED ROCK SHALE, grey, very low strength D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Excavator bucket
Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling
Diatube Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP30 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82592, 150.75363 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Clayey SILT: high plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, grey mottled brown and red, trace gravel 0.30 m: with tree root 0.30m to 0.50m D 0.40 - 0.50 m 0.5 M (≈PL) St Stable F 1.0 D 140 - 150 m 1.5 WEATHERED ROCK SHALE, pale brown and grey, with clay, very low TERMINATED AT 1.80 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Excavator bucket
Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling
Diatube Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

Photo, Monitoring Tools

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA,

7.GLB 1

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP31 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82606, 150.75510 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown M (<PL) RESIDUAL SOIL CLAY: high plasticity, brown mottled red D 0.40 - 0.50 m 0.5 Stable grades: grey mottled red and brown $\stackrel{\sim}{\sim}$ F CH M (≈PL) St D 0.90 - 1.00 m 1.0 D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown

Refer to explanatory notes for details of abbreviations and basis of descriptions

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

water inflow

■ water outflow

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP32 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82680, 150.75231 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL D 0.00 - 0.20 m Clayey SILT: medium plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, red mottled grey D 0.40 - 0.50 m 0.5 M (≈PL) grades: grey mottled pale brown Stable $\stackrel{\sim}{\sim}$ F St 1.0 M (<PL) CLAY: low plasticity, grey, with extremely weatherd shale, inferred very low strength D 1.40 - 1.50 m TERMINATED AT 1.50 m Target depth 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F

Excavator bucket
Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling
Diatube AD/V AD/T HFA WB DT

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

Hard Very Hard (Refusal)

WATER Water Level on Date shown water inflow ■ water outflow

DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer

Moisture Content Plate Bearing Test IMP - Borehole Impression Test PID Photoionisation Detector Vane Shear; P=Peak,

Dry Moist Wet Plastic limit Liquid limit Moisture content

MOISTURE

Very Soft Soft Firm Stiff Very Stiff Hard

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP33 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82705, 150.75333 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, brown orange mottled red D 0.40 - 0.50 m 0.5 M (<PL) Stable $\stackrel{\sim}{\sim}$ F grades: trace ironstone, grey mottled red, low plasticity СН St to VSt 1.0 D to M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit Water Level on Date

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

RELATIVE DENSITY

Very Loose Loose Medium Dense VL

Dense Very Dense D VD

Liquid limit Moisture content

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP34 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82706, 150.75412 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: medium plasticity, dark brown, with clay B 0.20 - 0.50 m RESIDUAL SOIL CLAY: high plasticity, brown red mottled grey D 0.20 - 0.30 m D 0.40 - 0.50 m 0.5 CH M (≂PL) St D 0.90 - 1.00 m F $\stackrel{\sim}{\sim}$ Silty CLAY: medium plasticity, grey mottled red and brown orange, with ironstone gravel D 140 - 150 m I I I I IM (<PL) D 1.90 - 2.00 m TERMINATED AT 2.00 m 1 1 1 1+111-2.5 ++++ \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow

Refer to explanatory notes for details of abbreviations and basis of descriptions

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36

7.GLB 1

CS 2.01.7

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP35 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82712, 150.75520 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 4/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, brown grey, trace gravel M (<PL) RESIDUAL SOIL Silty CLAY: medium plasticity, brown mottled red D 0.40 - 0.50 m 0.5 M (≈PL) St $\stackrel{\sim}{\mathsf{H}}$ F 1.0 Sandy CLAY: low plasticity, grey mottled red M (<PL) VSt D 140 - 150 m 1.5 WEATHERED ROCK SANDSTONE, fine grained, pale brown, very low TERMINATED AT 1.70 m Target depth 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Water Level on Date

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, AD/V AD/T HFA WB DT

Photo, Monitoring Tools

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

Dry Moist Wet Plastic limit Liquid limit Moisture content RELATIVE DENSITY

VL

Very Loose Loose Medium Dense

Dense Very Dense D VD

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP36 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82722, 150.75070 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Clayey SILT: medium plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, red mottled grey and pale brown D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F CH St grades: grey mottled pale red 1.0 M (<PL) D 1.40 - 1.50 m CLAY: low plasticity, grey, with extremely weatherd shale, inferred very low strength CL TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal)

Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling AD/V AD/T HFA WB DT

Photo, Monitoring Tools

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA,

7.GLB

WATER Water Level on Date shown water inflow ■ water outflow

Moisture Content Plate Bearing Test IMP - Borehole Impression Test PID

Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa) MOISTURE

Dry Moist Wet Plastic limit Liquid limit Moisture content

RELATIVE DENSITY VL

Very Loose Loose Medium Dense Dense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP37 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Sheet: 1 of 1 Location: Job No: 5017200153 Position: -33.82747, 150.75290 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure SILT: medium plasticity, dark brown, with gravel RESIDUAL SOIL CLAY: high plasticity, red mottled grey D 0.40 - 0.50 m 0.5 СН M (<PL) S Stable $\stackrel{\sim}{\sim}$ F Silty CLAY: low plasticity, grey 1.0 M (<PL) to D D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP38 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82755, 150.75408 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Sandy SILT: low plasticity, brown to orange brown RESIDUAL SOIL CLAY: high plasticity, pale red mottled grey D 0.40 - 0.50 m 0.5 M (≈PL) СН St Stable $\stackrel{\sim}{\sim}$ F Silty CLAY: high plasticity, grey mottled red, trace 1.0 M (<PL) to D D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit Water Level on Date

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

RELATIVE DENSITY

Liquid limit Moisture content

Very Loose Loose Medium Dense VLDense Very Dense D VD

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP39 Project: Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82830, 150.75082 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure SILT: low plasticity, brown M (<PL) RESIDUAL SOIL CLAY: medium plasticity, pale red mottled grey B 0.20 - 0.50 m D 0.40 - 0.50 m 0.5 M (≈PL) F St D 0.90 - 1.00 m grades: trace EW shale fragments 1.0 $\stackrel{\sim}{\sim}$ M (<PL) WEATHERED ROCK SHALE, pale grey, with clay, extremely weathered, D 140 - 150 m I I II I ID 1.90 - 2.00 m TERMINATED AT 2.00 m 1 1 1 1 \perp I + I + I+111-2.5 ++++ \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler PRT Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36

7.GLB 1

CS 2.01.

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP40 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82843, 150.75290 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, grey mottled red and orange brown D 0.40 - 0.50 m F 0.5 СН M (≈PL) St Stable $\stackrel{\sim}{\sim}$ 1.0 WEATHERED ROCK SILTSTONE, grey mottled brown and dark red, D Н D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CS 2.01.7

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP41 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82855, 150.75460 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure SILT: low plasticity, dark brown, with gravel RESIDUAL SOIL CLAY: high plasticity, brown mottled grey and red D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F M (≈PL) 1.0 D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date AD/V AD/T HFA WB DT IMP - Borehole Impression Test Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP42 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82527, 150.75761 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown, trace gravel M (<PL) RESIDUAL SOIL CLAY: high plasticity, grey mottled red D 0.40 - 0.50 m 0.40 m: PP 140kPa, 120kPa, 100kPa 0.5 Stable $\stackrel{\sim}{\sim}$ F M (≈PL) St 1.0 Silty CLAY: medium plasticity, grey mottled red and M (<PL) St D 1.40 - 1.50 m TERMINATED AT 1.50 m Target depth 7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools 2.0

METHOD

Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer

Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling AD/V AD/T HFA WB DT

Hard Very Hard (Refusal) WATER

Very Easy (No Resistance)

PENETRATION

-2.5

Water Level on Date shown water inflow ■ water outflow

FIELD TESTS

SPT - Standard Penetration Test HP Hand/Pocket Penetrometer DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer

Moisture Content PRT Plate Bearing Test IMP - Borehole Impression Test PID Photoionisation Detector

Vane Shear; P=Peak, R=Resdual (uncorrected kPa) SAMPLES

Bulk disturbed sample Disturbed sample
Environmental sample
Thin wall tube 'undisturbed'

MOISTURE

Dry Moist Wet Plastic limit Liquid limit Moisture content SOIL CONSISTENCY VS

Very Soft Soft Firm Stiff Very Stiff Hard S F

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP43 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82555, 150.75989 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: medium plasticity, dark brown, trace gravel RESIDUAL SOIL CLAY: high plasticity, grey mottled pale red D 0.40 - 0.50 m 0.5 M (≈PL) F D 0.90 - 1.00 m F 1.0 $\stackrel{\sim}{\sim}$ CLAY: medium plasticity, grey mottled red and brown orange, with ironstone gravel D 140 - 150 m M (<PL) D 1.90 - 2.00 m TERMINATED AT 2.00 m -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling AD/V AD/T HFA WB DT 7.GLB

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

Water Level on Date shown water inflow

■ water outflow

Plate Bearing Test IMP - Borehole Impression Test

PID Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)

Dry Moist Wet Plastic limit Liquid limit Moisture content RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP44 Project: Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82575, 150.75637 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: dark brown, with gravel M (<PL) B 0.20 - 0.60 m RESIDUAL SOIL Silty CLAY: brown orange mottled red and grey D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F grades: grey mottled red M (≈PL) 1.00 m: PP 300kPa, 350kPa, 300kPa D 140 - 150 m with ironstone gravel TERMINATED AT 1.50 m Target depth 1111 1111 \perp +111-2.5 ++++ \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler PRT Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VL

Refer to explanatory notes for details of abbreviations and basis of descriptions

shown

water inflow

■ water outflow

Photo, Monitoring Tools

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA,

7.GLB 1

CS 2.01.7

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP45 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82606, 150.75724 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure Sandy SILT: low plasticity, dark brown, trace gravel RESIDUAL SOIL Silty CLAY: high plasticity, grey mottled red, trace D 0.40 - 0.50 m 0.5 F M (≈PL) Stable $\stackrel{\sim}{\sim}$ ROCK SILTSTONE, pale grey, highly weathered, low Н D 1.20 - 1.30 m TERMINATED AT 1.30 m 1.5 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP46 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82630, 150.75799 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Gravelly SILT: low plasticity, dark brown RESIDUAL SOIL Sandy CLAY: low plasticity, red brown $\stackrel{\sim}{\Box}$ D 0.40 - 0.50 m M (<PL) 0.5 D 0.70 - 0.80 m Silty CLAY: high plasticity, grey СН Н M (≈PL) F TERMINATED AT 0.80 m 1.0 1.5 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Excavator bucket
Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling
Diatube Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test Very Loose Loose Medium Dense VL

CS 2.01.7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools AD/V AD/T HFA WB DT Refer to explanatory notes for details of abbreviations and basis of descriptions

shown

water inflow

■ water outflow

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP47 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82632, 150.75913 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Sandy SILT: low plasticity, dark brown black RESIDUAL SOIL Clayey SILT: high plasticity, brown, with gravel D 0.40 - 0.50 m 0.5 M (≂PL) 0.50 m: observed water Groundwater Observed Stable $\stackrel{\sim}{\sim}$ F 0.80m CLAY: high plasticity, grey mottled red 0.95 m: water inflow 1.0 M (≈PL) D 1.40 - 1.50 m 1.50 m; visible water TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow Dense Very Dense R=Resdual (uncorrected kPa) D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP48 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82729, 150.75596 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Sandy SILT: low plasticity, brown to pale brown, with gravel M (<PL) RESIDUAL SOIL Silty CLAY: medium plasticity, brown orange mottled grey and red D 0.40 - 0.50 m 0.5 M (≂PL) St F Ξ 1.0 Sandy CLAY: low plasticity, grey mottled brown orange, trace ironstone grave M (<PL) St D 140 - 150 m TERMINATED AT 1.60 m Target depth -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit Water Level on Date

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, AD/V AD/T HFA WB DT 7.GLB

Photo, Monitoring Tools

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

RELATIVE DENSITY

Liquid limit Moisture content

Very Loose Loose Medium Dense VLDense Very Dense D VD

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP49 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82746, 150.75691 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown, with gravel FILL FILL: Silty CLAY: high plasticity, orange brown СН s D 0.40 - 0.50 m RESIDUAL SOIL CLAY: high plasticity, grey mottled pale red 0.5 M (≈PL to M (<LL) Stable $\stackrel{\sim}{\sim}$ F CH s 1.0 CLAY: medium plasticity, grey mottled pale brown and red, with ironstone gravel M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m Target depth 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools AD/V AD/T HFA WB DT Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

Very Loose Loose Medium Dense

Dense Very Dense

VL

D VD

Liquid limit Moisture content

IMP

PID

shown

water inflow

■ water outflow

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP50 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82767, 150.75886 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 8/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure Gravelly SILT: low to medium plasticity, dark brown RESIDUAL SOIL Gravelly SILT: low plasticity, orange brown mottled grey, ironstone gravel D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F ML M (<PL) St 1.0 grades: grey mottled red D 1.40 - 1.50 m TERMINATED AT 1.50 m -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow Dense Very Dense R=Resdual (uncorrected kPa) D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

Photo, Monitoring Tools

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA,

7.GLB 1

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP51 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81923, 150.75964 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown, trace gravel B 0.20 - 0.50 m RESIDUAL SOIL CLAY: high plasticity, red mottled grey D 0.40 - 0.50 m 0.5 M (≈PL) St D 0.90 - 1.00 m F 1.0 $\stackrel{\sim}{\sim}$ grades: trace ironstone, grey mottled red Silty CLAY: medium plasticity, grey mottled red, D 140 - 150 m I I I I IM (≈PL) D 1.90 - 2.00 m TERMINATED AT 2.00 m 1 1 1 1 \perp +111-2.5 +111 \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown

Refer to explanatory notes for details of abbreviations and basis of descriptions

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36

7.GLB 1

CS 2.01.7

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

water inflow

■ water outflow

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP52 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.81853, 150.75856 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown M (<PL) RESIDUAL SOIL SILT: high plasticity, orange brown mottled grey and red D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F 1.0 CLAY: high plasticity, grey mottled brown and red M (≈PL) to M (<LL) СН D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

Water Level on Date

water inflow

■ water outflow

shown

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

RELATIVE DENSITY

Liquid limit Moisture content

Very Loose Loose Medium Dense VLDense Very Dense D VD

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP53 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81918, 150.75782 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, red brown, with gravel M (<PL) RESIDUAL SOIL CLAY: high plasticity, brown mottled red and grey D 0.40 - 0.50 m 0.5 tree root Stable $\stackrel{\sim}{\sim}$ F M (<PL) VSt to H 1.0 Silty CLAY: high plasticity, grey mottled red and M (<PL) VSt D 1.40 - 1.50 m TERMINATED AT 1.50 m Target depth 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer

Ripper Hand auger Push tube Sonic drilling Air hammer Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling AD/V AD/T HFA WB DT

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

Hard Very Hard (Refusal) WATER Water Level on Date shown

water inflow ■ water outflow

Moisture Content PRT Plate Bearing Test IMP - Borehole Impression Test

PID Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)

MOISTURE

Dry Moist Wet Plastic limit Liquid limit Moisture content Very Soft Soft Firm Stiff Very Stiff Hard

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP54 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Sheet: 1 of 1 Location: Job No: 5017200153 Position: -33.81965, 150.75602 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, brown RESIDUAL SOIL Silty CLAY: high plasticity, brown mottled red and D 0.40 - 0.50 m 0.5 M (≈PL) s Stable $\stackrel{\sim}{\sim}$ F 1.0 CLAY: high plasticity, pale grey mottled red and M (≈PL) to M (<LL) СН D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP55 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81899, 150.75498 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, brown RESIDUAL SOIL CLAY: high plasticity, brown mottled grey D 0.40 - 0.50 m 0.5 M (≈PL) F Stable $\stackrel{\sim}{\sim}$ grades: grey mottled yellow brown and red 1.0 Silty CLAY: high plasticity, grey mottled yellow brown M (≈PL) D 140 - 150 m Gravelly CLAY: high plasticity, grey mottled red, ironstone gravel gravel СН Н M (≈PL) TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

Photo, Monitoring Tools

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:36 10.0.000 Datgel AGS RTA,

7.GLB

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP56 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81836, 150.75623 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown, with gravel M (<PL) FILL FILL: Gravelly SILT: medium plasticity, brown orange, ironstone gravel D 0.40 - 0.50 m 0.5 M (<PL) to M (≈ PL) Stable $\stackrel{\sim}{\sim}$ F 1.0 RESIDUAL SOIL Silty CLAY: high plasticity, brown orange mottled red and grey, with ironstone gravel CH M (≈PL) CLAY: high plasticity, grey mottled red and brown orange, with ironstone gravel M (≈PL) D 140 - 150 m tree root at 1.30m TERMINATED AT 1.50 m Target depth 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER PRT Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VL

Refer to explanatory notes for details of abbreviations and basis of descriptions

shown

water inflow

■ water outflow

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10:0.000 Datgel AGS RTA, Photo, Monitoring Tools

7.GLB

CS 2.01.

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP57 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.81825, 150.75497 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: high plasticity, brown grey, trace gravel RESIDUAL SOIL Silty CLAY: high plasticity, grey mottled brown D 0.40 - 0.50 m 0.5 M (≂PL) S to F Stable $\stackrel{\sim}{\sim}$ F 1.0 Clayey SILT: low to medium plasticity, grey mottled brown M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP58 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81891, 150.75356 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, brown, trace gravel B 0.20 - 0.60 m RESIDUAL SOIL CLAY: high plasticity, yellow brown D 0.40 - 0.50 m 0.5 M (≈PL) D 0.90 - 1.00 m grades: yellow brown mottled grey F 1.0 $\stackrel{\sim}{\sim}$ Silty CLAY: high plasticity, grey mottled yellow brown D 140 - 150 m 1.5 grades: trace ironstone MH D 1.90 - 2.00 m TERMINATED AT 2.00 m 1 1 1 1+111-2.5 ++++ \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VL

Refer to explanatory notes for details of abbreviations and basis of descriptions

shown

water inflow

■ water outflow

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37

7.GLB 1

CS 2.01.7

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP59 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81968, 150.75321 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: high plasticity, dark brown, trace gravel RESIDUAL SOIL CLAY: high plasticity, yellow brown mottled grey D 0.40 - 0.50 m 0.5 M (■PL to M (<LL) s Stable $\stackrel{\sim}{\sim}$ F 1.0 Silty CLAY: high plasticity, grey mottled yellow brown M (≈PL) S D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VL

Refer to explanatory notes for details of abbreviations and basis of descriptions

shown

water inflow

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP60 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.81885, 150.75255 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown M (=PL) RESIDUAL SOIL CLAY: high plasticity, yellow brown mottled grey D 0.40 - 0.50 m 0.5 M (■PL to M (<LL) s Stable $\stackrel{\sim}{\sim}$ F 1.0 Silty CLAY: high plasticity, grey mottled yellow brown M (≈PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP61 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82025, 150.75616 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown, trace gravel B 0.20 - 0.60 m RESIDUAL SOIL Clayey SILT: medium plasticity, brown orange mittled red СН M (≈PL) D 0.40 - 0.50 m 0.5 CLAY: high plasticity, grey with pale red streaks D 0.90 - 1.00 m F 1.0 $\stackrel{\sim}{\sim}$ M (≈PL) to M (<LL) St D 140 - 150 m 1.5 grades: trace ironstone, pale grey mottled brown orange and dark red D 1.90 - 2.00 m TERMINATED AT 2.00 m 1 1 1 1 \perp I + I + I+111-2.5 ++++I I I I \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 CS 2.01.7

AD/V AD/T HFA WB DT

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

Very Loose Loose Medium Dense VLDense Very Dense D VD

Liquid limit Moisture content

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP62 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82028, 150.75449 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Silty Gravelly SAND: brown M (<PL) RESIDUAL SOIL Gravelly SILT: low plasticity, brown red, ironstone gravel, with clay D 0.40 - 0.50 m 0.5 M (≈PL) St Stable $\stackrel{\sim}{\sim}$ F grades: grey mottled red 1.0 M (<PL) VSt D 1.40 - 1.50 m CLAY: high plasticity, grey mottled red and brown СН M (≈PL) TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F P - Dynamic Cone Penetrometer- Perth Sand Penetrometer DCP -Hard Very Hard (Refusal) PSP MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CS 2.01.

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP63 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82023, 150.75323 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, brown M (<PL) RESIDUAL SOIL Silty CLAY: high plasticity, yellow brown D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F CLAY: high plasticity, grey mottled yellow brown 1.0 M (≈PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VL

Refer to explanatory notes for details of abbreviations and basis of descriptions

shown

water inflow

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

TEST PIT LOG SHEET Sciences Client: **HB+B Property** Hole No: TP64 Project: Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82103, 150.75155 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Sandy SILT: low plasticity, brown pale red M (≈PL) B 0.40 - 0.60 m CBR RESIDUAL SOIL Silty CLAY: medium to high plasticity, yellow brown D 0.40 - 0.50 m 0.5 grades: high plasticity, yellow brown mottled grey D 0.90 - 1.00 m F 1.0 $\stackrel{\sim}{\sim}$ M (≈PL) St D 140 - 150 m D 1.90 - 2.00 m TERMINATED AT 2.00 m 1 1 1 1 \perp +111-2.5 ++++ \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37

7.GLB 1

CS 2.01.7

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP65 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82112, 150.75263 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 7/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown M (<PL) RESIDUAL SOIL Clayey SILT: low plasticity, brown mottled red and grey, with ironstone gravel D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F 1.0 CLAY: high plasticity, grey mottled red, with СН M (≈PL) St D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler PRT Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown

Refer to explanatory notes for details of abbreviations and basis of descriptions

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

water inflow

■ water outflow

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP66 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82108, 150.75408 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown M (<PL) RESIDUAL SOIL CLAY: high plasticity, brown orange mottled red D 0.40 - 0.50 m 0.5 M (<PL) Stable $\stackrel{\sim}{\sim}$ F Silty CLAY: high plasticity, grey mottled red 1.0 M (≈PL) St to VSt D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F P - Dynamic Cone Penetrometer- Perth Sand Penetrometer DCP -Hard Very Hard (Refusal) PSP MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP67 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82196, 150.75186 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown, trace gravel M (<PL) RESIDUAL SOIL Silty CLAY: medium plasticity, brown orange mottled red and grey D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F 1.0 CLAY: high plasticity, grey mottled red and brown M (≈PL) St D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown

Refer to explanatory notes for details of abbreviations and basis of descriptions

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

water inflow

■ water outflow

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP68 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Sheet: 1 of 1 Location: Job No: 5017200153 Position: -33.82189, 150.75305 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown RESIDUAL SOIL Silty CLAY: medium plasticity, red, trace ironstone D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F 1.0 Clayey SILT: medium plasticity, grey mottled red M (≈PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) - Perth Sand Penetrometer PSP MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown

Refer to explanatory notes for details of abbreviations and basis of descriptions

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

water inflow

■ water outflow

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP69 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82185, 150.75400 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Resistance Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown RESIDUAL SOIL Clayey SILT: medium plasticity, red brown D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F 1.0 CLAY: high plasticity, grey with brown and red CH M (≈PL) SILTSTONE, grey with brown orange, with Silty CLAY, extremely weathered, very low strength WEATHERED ROCK D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER PRT Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak, Liquid limit Moisture content ■ water outflow Dense Very Dense R=Resdual (uncorrected kPa) D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10:0.000 Datgel AGS RTA, Photo, Monitoring Tools

7.GLB

CONSTRUCTION SCIENCES

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP70 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82245, 150.75201 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown B 0.20 - 0.50 m RESIDUAL SOIL Clayey SILT: high plasticity, brown red, with ironstone gravel D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F M (≈PL) 1.0 grades: grey mottled red D 140 - 150 m TERMINATED AT 1.50 m 1111 I I I I I \perp +111-2.5 ++++SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CS 2.01.7

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP71 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82260, 150.75315 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, grey mottled red and brown D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F M (≈PL) St 1.0 grades: with ironstone gravel D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Excavator bucket
Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling
Diatube Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP -Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Plate Bearing Test Dry Moist Wet Plastic limit Water Level on Date

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

RELATIVE DENSITY

Liquid limit Moisture content

Very Loose Loose Medium Dense VLDense Very Dense D VD

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP72 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82264, 150.75430 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown Silty CLAY: medium plasticity, brown orange mottled red RESIDUAL SOIL D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F M (≈PL) 1.0 grades: grey mottled brown and red SANDSTONE, pale grey brown, with clay, extremely weathered, very low strength WEATHERED ROCK D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit Water Level on Date

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10:0.000 Datgel AGS RTA, Photo, Monitoring Tools 7.GLB

AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

shown

water inflow

■ water outflow

RELATIVE DENSITY

Very Loose Loose Medium Dense VLDense Very Dense D VD

Liquid limit Moisture content

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP73 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82272, 150.75551 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Method Depth Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, brown RESIDUAL SOIL Clayey SILT: medium plasticity, orange brown with grey, with gravel D 0.40 - 0.50 m 0.5 M (≈PL) Stable $\stackrel{\sim}{\sim}$ F grades: grey mottled red 1.0 Clayey SAND: fine grained, poorly graded, rounded, grey mottled brown, low plasticity clay SC MD М D 1.40 - 1.50 m ROCK SANDSTONE, fine grained, grey mottled brown, extremely weathered, low strength TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE

Percussion sampler AD/V AD/T HFA WB DT

Photo, Monitoring Tools

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA,

7.GLB

CS 2.01.

WATER Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling shown

Water Level on Date

water inflow ■ water outflow Moisture Content

Plate Bearing Test IMP - Borehole Impression Test PID Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)

Dry Moist Wet Plastic limit Liquid limit Moisture content RELATIVE DENSITY

Very Loose Loose Medium Dense VL Dense Very Dense D VD

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP74 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82275, 150.75673 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown grey, trace gravel RESIDUAL SOIL CLAY: high plasticity, grey mottled brown D 0.40 - 0.50 m M (≈PL) 0.5 Stable grades: grey mottled red, low plasticity $\stackrel{\sim}{\sim}$ F 1.0 M (<PL) D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

Very Loose Loose Medium Dense

Dense Very Dense

VL

D VD

Liquid limit Moisture content

IMP

PID

shown

water inflow

■ water outflow

Construction **TEST PIT LOG SHEET Sciences HB+B Property** Hole No: TP75 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82315, 150.75164 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Clayey SILT: medium plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, grey mottled red D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F M (≈PL) St 1.0 D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Excavator bucket
Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling
Diatube Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER Plate Bearing Test Dry Moist Wet Plastic limit

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

AD/V AD/T HFA WB DT

Refer to explanatory notes for details of abbreviations and basis of descriptions

Water Level on Date

water inflow

■ water outflow

shown

CONSTRUCTION SCIENCES

- Borehole Impression Test

Vane Shear; P=Peak,

Photoionisation Detector

R=Resdual (uncorrected kPa)

IMP

PID

RELATIVE DENSITY

Liquid limit Moisture content

Very Loose Loose Medium Dense VLDense Very Dense D VD

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP77 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82347, 150.75502 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE **Contractor: Platinum Excavation** Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL Silty CLAY: medium plasticity, dark brown RESIDUAL SOIL CLAY: high plasticity, brown mottled grey D 0.40 - 0.50 m 0.5 M (≈PL) St Stable $\stackrel{\sim}{\sim}$ F 1.0 grades: grey mottled red M (<PL) VSt D 1.40 - 1.50 m TERMINATED AT 1.50 m 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content Air hammer Percussion sampler Short spiral auger Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date AD/V AD/T HFA WB DT IMP - Borehole Impression Test Very Loose Loose Medium Dense VLshown PID Photoionisation Detector water inflow Vane Shear; P=Peak,

Refer to explanatory notes for details of abbreviations and basis of descriptions

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP78 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82384, 150.75217 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 5/5/20 Checked By: VDS Logged By: NL Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown, with clay RESIDUAL SOIL CLAY: high plasticity, grey mottled brown D 0.40 - 0.50 m 0.5 Stable $\stackrel{\sim}{\sim}$ F M (≈PL) St 1.0 grades: with ironstone gravel D 1.40 - 1.50 m WEATHERED ROCK SHALE, pale brown and grey, with clay and ironstone staining, extremely weathered, low strength TERMINATED AT 1.50 m Target depth 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Excavator bucket Ripper Hand auger Push tube Sonic drilling Air hammer Percussion sampler Solid flight auger: V-Bit Solid flight auger: TC-Bit Hollow flight auger Washbore drilling Diatube Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date AD/V AD/T HFA WB DT IMP - Borehole Impression Test Very Loose Loose Medium Dense VL

Refer to explanatory notes for details of abbreviations and basis of descriptions

shown

water inflow

■ water outflow

GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawngFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Photoionisation Detector

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

D VD

Vane Shear; P=Peak,

PID

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP79 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Job No: 5017200153 Sheet: 1 of 1 Position: -33.82420, 150.75418 Angle from Horizontal: 90° Surface Elevation: Machine Type: 5 tonne Excavator **Excavation Method: EX** Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Sample or STRUCTURE & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, brown, trace gravel RESIDUAL SOIL CLAY: high plasticity, brown mottled grey red D 0.40 - 0.50 m F 0.5 Stable $\stackrel{\sim}{\mathsf{L}}$ M (≈PL) 1.0 WEATHERED ROCK SILTSTONE, pale grey, highly weathered, low Н D D 1.10 - 1.20 m TERMINATED AT 1.20 m 1.5 2.0 -2.5 SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Excavator bucket
Ripper
Hand auger
Push tube
Sonic drilling
Air hammer
Percussion sampler
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling
Diatube Very Easy (No Resistance) Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F DCP - Dynamic Cone Penetrometer PSP - Perth Sand Penetrometer Hard Very Hard (Refusal) MOISTURE Moisture Content WATER Plate Bearing Test Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date AD/V AD/T HFA WB DT IMP - Borehole Impression Test Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

7.GLB Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37 10.0.000 Datgel AGS RTA, Photo, Monitoring Tools

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

TEST PIT LOG SHEET Sciences HB+B Property Hole No: TP80 Geotechnical Assessment, Proposed Industrial Land Development 221-227 and 289-317 Luddenham Road Location: Sheet: 1 of 1 Job No: 5017200153 Position: -33.82440, 150.75656 Angle from Horizontal: 90° Surface Elevation: **Excavation Method: EX** Machine Type: 5 tonne Excavator Excavation Dimensions: 1.50m LONG AND 0.30m WIDE Contractor: Platinum Excavation Date Excavated: 6/5/20 Checked By: VDS Logged By: NL Excavation Sampling & Testing Material Description Ξ Classification SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, (blows Graphic Log Consistency Relative Density Depth (Method Moisture Condition Stability Water Sample or STRUCTURE ` per 100 mm) & Other Observations Field Test fabric & texture, strength, weathering, defects and structure TOPSOIL SILT: low plasticity, dark brown B 0.20 - 0.60 m RESIDUAL SOIL CLAY: high plasticity, red mottled grey CBR D 0.20 - 0.30 m D 0.40 - 0.50 m -0.5 D 0.90 - 1.00 m F 1.0 $\stackrel{\sim}{\sim}$ CH M (≈PL) St grades: trace ironstone D 140 - 150 m I I ID 1.90 - 2.00 m TERMINATED AT 2.00 m 1 1 1 1 \perp I + I + I+111-2.5 ++++I + I + I \perp SOIL CONSISTENCY METHOD PENETRATION FIELD TESTS SAMPLES Very Soft Soft Firm Stiff Very Stiff Hard SPT - Standard Penetration Test Bulk disturbed sample VS Excavator bucket Very Easy (No Resistance) Ripper Hand auger Push tube Sonic drilling Air hammer Disturbed sample
Environmental sample
Thin wall tube 'undisturbed' HP Hand/Pocket Penetrometer S F Dynamic Cone Penetrometer Hard Very Hard (Refusal) PSP - Perth Sand Penetrometer MOISTURE Moisture Content WATER Percussion sampler Plate Bearing Test Percussion sampler
Short spiral auger
Solid flight auger: V-Bit
Solid flight auger: TC-Bit
Hollow flight auger
Washbore drilling Dry Moist Wet Plastic limit RELATIVE DENSITY Water Level on Date IMP - Borehole Impression Test AD/V AD/T HFA WB DT Very Loose Loose Medium Dense VLshown PID Photoionisation Detector

Refer to explanatory notes for details of abbreviations and basis of descriptions

water inflow

■ water outflow

Photo, Monitoring Tools

10.0.000 Datgel AGS RTA,

Log CARDNO NON-CORED 5017200153 LOGS.GPJ <<DrawingFile>> 01/06/2020 15:37

7.GLB 1

CS 2.01.7

CONSTRUCTION SCIENCES

Vane Shear; P=Peak,

R=Resdual (uncorrected kPa)

Liquid limit Moisture content

Dense Very Dense

Explanatory Notes

Method

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

Test Pitting: excavation/trench BH Backhoe bucket EX Excavator bucket R Ripper H Hydraulic Hammer X Existing excavation N Natural exposure Manual drilling: hand operated tools HA Hand Auger Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling AH Air hammer			
EX Excavator bucket R Ripper H Hydraulic Hammer X Existing excavation N Natural exposure Manual drilling: hand operated tools HA Hand Auger Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling	Test Pitting: excavation/trench		
R Ripper H Hydraulic Hammer X Existing excavation N Natural exposure Manual drilling: hand operated tools HA Hand Auger Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling			
H Hydraulic Hammer X Existing excavation N Natural exposure Manual drilling: hand operated tools HA Hand Auger Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling			
X Existing excavation N Natural exposure Manual drilling: hand operated tools HA Hand Auger Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling			
N Natural exposure Manual drilling: hand operated tools HA Hand Auger Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling			
Manual drilling: hand operated tools HA Hand Auger Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling	Existing excavation		
HA Hand Auger Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling			
Continuous sample drilling PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling			
PT Push tube PS Percussion sampling SON Sonic drilling Hammer drilling			
PS Percussion sampling SON Sonic drilling Hammer drilling			
SON Sonic drilling Hammer drilling			
Hammer drilling			
AH Air hammer			
חוו אוו וומווווודו			
AT Air track			
Spiral flight auger drilling			
AS Auger screwing			
AD/V Continuous flight auger: V-bit			
AD/T Continuous spiral flight auger: TC-Bit			
HFA Continuous hollow flight auger			
Rotary non-core drilling			
WB Washbore drilling			
RR Rock roller			
Rotary core drilling			
PQ 85mm core (wire line core barrel)			
HQ 63.5mm core (wire line core barrel)			
NMLC 51.94mm core (conventional core barre	l)		
NQ 47.6mm core (wire line core barrel)			
DT Diatube (concrete coring)			

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling method

Sampling mem	ou
Soil sampling	
В	Bulk disturbed sample
D	Disturbed sample
С	Core sample
ES	Environmental soil sample
SPT	Standard Penetration Test sample
U	Thin wall tube 'undisturbed' sample
Water sampling	
WS	Environmental water sample

Field tes	ting			
SPT	Standa	rd Penetration Test		
HP/PP	Hand/F	Hand/Pocket Penetrometer		
Dynamic	Penetron	neters (blows per noted increment)		
	DCP	Dynamic Cone Penetrometer		
	PSP	Perth Sand Penetrometer		
MC	Moistu	re Content		
VS	Vane S	Shear		
PBT	Plate B	Searing Test		
IMP	Boreho	le Impression Test		
PID	Photo I	onization Detector		

If encountered, refusal (R), virtual refusal (VR) or hammer bouncing (HB) of penetrometers may be noted.

The quality of the rock can be assessed by the degree of natural defects/fractures and the following.

Rock qu	Rock quality description		
TCR	Total Core Recovery (%)		
	(length of core recovered divided by the length of core run)		
RQD	Rock Quality Designation (%)		
	(sum of axial lengths of core greater than 100mm long divided by the length of core run)		

Notes on groundwater conditions encountered may include.

Groundwater	
Not Encountered	Excavation is dry in the short term
Not Observed	Water level observation not possible
Seepage	Water seeping into hole
Inflow	Water flowing/flooding into hole

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

Excavation conditions		
Stable	No obvious/gross short term instability noted	
Spalling	Material falling into excavation (minor/major)	
Unstable	Collapse of the majority, or one or more face of the excavation	

Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

Soil Classifica	ation	Particle Size (mm)
CLAY		< 0.002
SILT		0.002 0.075
SAND	fine	0.075 to 0.21
	medium	0.21 to 0.6
	coarse	0.6 to 2.36
GRAVEL	fine	2.36 to 6.7
	medium	6.7 to 19
	coarse	19 to 63
COBBLES		63 to 200
BOULDERS		> 200

Soil types may be qualified by the presence of minor components on the basis of field examination methods and/or the soil grading.

Terminology	In coarse	In fine soils	
reminiology	% fines	% coarse	% coarse
Trace	≤5	≤15	≤15
With	>5, ≤12	>15, ≤30	>15, ≤30

The strength of cohesive soils is classified by engineering assessment or field/lab testing as follows.

Strength	Symbol	Undrained shear strength
Very Soft	VS	≤12kPa
Soft	S	12kPa to ≤25kPa
Firm	F	25kPa to ≤50kPa
Stiff	St	50kPa to ≤100kPa
Very Stiff	VSt	100kPa to ≤200kPa
Hard	Н	>200kPa

Cohesionless soils are classified on the basis of relative density as follows.

Relative Density	Symbol	Density Index
Very Loose	VL	<15%
Loose	L	15% to ≤35%
Medium Dense	MD	35% to ≤65%
Dense	D	65% to ≤85%
Very Dense	VD	>85%

The plasticity of cohesive soils is defined by the Liquid Limit (LL) as follows.

Plasticity	Silt LL	Clay LL
Low plasticity	≤ 35%	≤ 35%
Medium plasticity	N/A	> 35% ≤ 50%
High plasticity	> 50%	> 50%

The moisture condition of soil (w) is described by appearance and feel and may be described in relation to the Plastic Limit (PL), Liquid Limit (LL) or Optimum Moisture Content (OMC).

Moistu	Moisture condition and description		
Dry	Cohesive soils: hard, friable, dry of plastic limit. Granular soils: cohesionless and free-running		
Moist	Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere		
Wet	Cool feel and darkened colour: Cohesive soils usually weakened and free water forms when handling. Granular soils tend to cohere		

The structure of the soil may be described as follows.

Zoning	Description
Layer	Continuous across exposure or sample
Lens	Discontinuous layer (lenticular shape)
Pocket	Irregular inclusion of different material

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

The soil origin may also be noted if possible to deduce.

Soil origin a	Soil origin and description					
Fill	Anthropogenic deposits or disturbed material					
Topsoil	Zone of soil affected by roots and root fibres					
Peat	Significantly organic soils					
Colluvial	Transported down slopes by gravity/water					
Aeolian	Transported and deposited by wind					
Alluvial	Deposited by rivers					
Estuarine	Deposited in coastal estuaries					
Lacustrine	Deposited in freshwater lakes					
Marine	Deposits in marine environments					
Residual soil	Soil formed by in situ weathering of rock, with no structure/fabric of parent rock evident					
Extremely weathered material	Formed by in situ weathering of geological formations, with the structure/fabric of parent rock intact but with soil strength properties					

The origin of the soil generally cannot be deduced solely on the appearance of the material and the inference may be supplemented by further geological evidence or other field observation. Where there is doubt, the terms 'possibly' or 'probably' may be used

Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Rock types are generally described according to the predominant grain or crystal size, and in groups for each rock type as follows.

Rock type	Groups
Sedimentary	Deposited, carbonate (porous or non), volcanic ejection
Igneous	Felsic (much quartz, pale), Intermediate, or mafic (little quartz, dark)
Metamorphic	Foliated or non-foliated
Duricrust	Cementing minerology (iron oxides or hydroxides, silica, calcium carbonate, gypsum)

Reference should be made to AS1726 for details of the rock types and methods of classification.

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

Term and sy	/mbol	Definition			
Residual Soil	RS	Soil developed on rock with the mass structure and substance of the parent rock no longer evident			
Extremely weathered	XW	Weathered to such an extent that the rock has 'soil-like' properties. Mass structure and substance still evident			
Distinctly weathered	DW	The strength is usually changed and may be highly discoloured. Porosity may be increased by leaching, or decreased due to deposition in pores. May be distinguished into MW (Moderately Weathered) and HW (Highly Weathered).			
Slightly weathered	SW	Slightly discoloured; little or no change of strength from fresh rock			
Fresh Rock	FR	The rock shows no sign of decomposition or staining			

The rock material strength can be defined based on the point load index as follows.

Term and symbol		Point Load Index I₅50 (MPa)
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	M	0.3 to 1.0
High	Н	1.0 to 3
Very High	VH	3 to 10
Extremely High	EH	> 10

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects.

A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

The defect spacing measured normal to defects of the same set or bedding, is described as follows.

Definition	Defect Spacing (mm)				
Thinly laminated	< 6				
Laminated	6 to 20				
Very thinly bedded	20 to 60				
Thinly bedded	60 to 200				
Medium bedded	200 to 600				
Thickly bedded	600 to 2000				
Very thickly bedded	> 2000				

Terms for describing rock and defects are as follows.

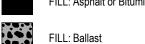
Defect Terms			
Joint	JT	Sheared zone	SZ
Bedding Parting	BP	Seam	SM
Foliation	FL	Vein	VN
Cleavage	CL	Drill Lift	DL
Crushed Seam	CS	Handling Break	HB
Fracture Zone	FZ	Drilling Break	DB

The shape and roughness of defects in the rock mass are described using the following terms.

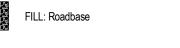
Planarity		Roughness	
Planar	PR	Very Rough	VR
Curved	CU	Rough	RF
Undulose	UN	Smooth	S
Irregular	IR	Slickensided	SL
Stepped	ST	Polished	POL
Discontinuous	DIS		

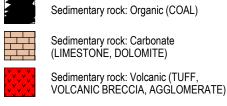
The coating or infill associated with defects in the rock mass are described as follows.

Infill and Coating						
Clean	CN					
Stained	SN					
Carbonaceous	Χ					
Minerals	MU	Unidentified mineral				
	MS	Secondary mineral				
	KT	Chlorite				
	CA	Calcite				
	Fe	Iron Oxide				
	Qz	Quartz				
Veneer	VNR	Thin or patchy coating				
Coating	CT	Infill up to 1mm				



Graphic Symbols Index


	CLAY	CLAY	SILT		SAND			GRAVEL	
	Silty CLAY	Claye	y SILT		Clayey SAND			Clayey GRAVEL	
	Sandy CLAY	Sandy	SILT Gravelly		Silty SAND			Silty GRAVEL	
	Gravelly CLAY	SILT			Gravelly SAND			Sandy GRAVEL	
	Silty Gravelly CLAY	Clayey	Sandy SILT		Clayey Silty SAND			Clayey Silty GRAVEL	
	Silty Sandy CLAY	Clayey	Gravelly SILT		Clayey Gravelly SA	ND		Clayey Sandy GRAVEL	
	Sandy Gravelly	Sandy	Gravelly SILT	ο (<u>·</u>	Silty Gravelly SAND)		Silty Sandy GRAVEL	
	COBBLES & BOULDERS		Sedimentary rock: fi (CLAYSTONE)	ine, mostly o	lay × × ×	× ,	gneous rock:	Felsic, fine (RHYOLITE)	
	PEAT, highly organic soil	Sedimentary rock: fir (SILTSTONE)		ine, mostly silt		+ + + + + + (Igneous rock: Felsic, coarse (GRANITE)		
415 415 415 415 415 415 415 415 415 5 415 415 41	TOPSOIL	· · · ·	Sedimentary rock: fi (MUDSTONE, SHA				gneous rock: BASALT, DOI	Mafic, fine to medium LERITE)	



FILL: Asphalt or Bituminous Seal



Sedimentary rock: medium

(SANDSTONE, GREYWACKE)

Sedimentary rock: coarse, rounded (CONGLOMERATE)

Sedimentary rock: fine to coarse, angular

Proposed Warehouse Development 221-227, 289-317 Luddenham Road Orchard Hills NSW 2748

APPENDIX

C

LABORATORY TEST RESULTS

ATTACHMENT - 1 - SOIL EXPOSURE CLASSIFICATION REPORT

221-227, 289-317 Luddenham Road Orchard Hills NSW 2748 Project:

Project Manager: Sampled by: Tested By: VDS

NL CS/EUROFINS

Sample ID	Date Sampled	Field Texture	Multiplicati on Factor	EC (µS/cm)	Ece	Salinity Rating	рН	Exposure Classification
TP01 0.50-0.60	7/5/2020	HEAVY CLAY	6	890	5.3	MS	5.8	A1
TP01 1.40-1.50	7/5/2020	HEAVY CLAY	6	950	5.7	MS	5.3	A2
TP02 0.50-0.60	7/5/2020	HEAVY CLAY	6	120	0.7	NS	5.6	A1
TP02 1.40-1.50	7/5/2020	HEAVY CLAY	6	800	4.8	MS	6.2	A1
TP03 0.50-0.60	7/5/2020	HEAVY CLAY	6	130	0.8	NS	5.5	A2
TP03 1.40-1.50	7/5/2020	HEAVY CLAY	6	470	2.8	SS	4.8	A2
TP04 0.40-0.50	7/5/2020	HEAVY CLAY	6	330	2.0	NS	5.3	A2
TP04 1.40-1.50	7/5/2020	HEAVY CLAY	6	470	2.8	SS	4.3	A2
TP05 0.50-0.60	7/5/2020	HEAVY CLAY	6	93	0.6	NS	5.5	A2
TP05 1.30-1.50	7/5/2020	HEAVY CLAY	6	72	0.4	NS	5.8	A1
TP06 0.50-0.60	7/5/2020	HEAVY CLAY	6	580	3.5	SS	6	A1
TP06 1.40-1.50	7/5/2020	HEAVY CLAY	6	990	5.9	MS	6.3	A1
TP07 0.50-0.60	7/5/2020	HEAVY CLAY	6	140	0.8	NS	5.5	A2
TP07 1.40-1.50	7/5/2020	HEAVY CLAY	6	890	5.3	MS	4.9	A2
TP08 0.50-0.60	6/5/2020	HEAVY CLAY	6	150	0.9	NS	5.4	A2
TP08 1.40-1.50	6/5/2020	HEAVY CLAY	6	230	1.4	NS	5.3	A2
TP09 0.50-0.60	6/5/2020	LIGHT CLAY	9	79	0.7	NS	5.3	A2
TP09 1.40-1.50	6/5/2020	LIGHT CLAY	9	33	0.3	NS	5.5	A2
TP10 0.50-0.60	6/5/2020	HEAVY CLAY	6	400	2.4	SS	5.4	A2
TP10 1.40-1.50	6/5/2020	SANDY LOAM	9	430	3.9	SS	5.5	A2
TP11 0.40-0.50	6/5/2020	LIGHT CLAY	9	53	0.5	NS	5.8	A1
TP11 1.40-1.50	6/5/2020	HEAVY CLAY	6	360	2.2	SS	4.9	A2
TP12 0.40-0.50	6/5/2020	MEDIUM CLAY	7	53	0.4	NS	5.8	A1
TP12 1.40-1.50	6/5/2020	MEDIUM CLAY	7	140	1.0	NS NS	5.1	A2
TP13 0.40-0.50	6/5/2020	HEAVY CLAY	6	200	1.2	NS NC	4.9	A2
TP13 1.40-1.50	6/5/2020	HEAVY CLAY	6	280	1.7	NS CC	5.8	A1
TP14 0.40-0.50	5/5/2020 5/5/2020	HEAVY CLAY HEAVY CLAY	6	410 230	2.5 1.4	SS NS	5.1 5	A2 A2
TP14 1.40-1.50 TP15 0.40-0.50	5/5/2020	HEAVY CLAY	6	150	0.9	NS NS	4.9	A2 A2
TP15 1.40-1.50	5/5/2020	MEDIUM CLAY	7	730	5.1	MS	4.9	A2 A2
TP16 0.40-0.50	5/5/2020	HEAVY CLAY	6	210	1.3	NS	4.7	A2
TP16 0.40-0.30	5/5/2020	HEAVY CLAY	6	310	1.9	NS NS	4.7	A2
TP16 1.40-1.50	5/5/2020	MEDIUM CLAY	7	500	3.5	SS	4.5	A2
TP17 0.40-0.50	5/5/2020	MEDIUM CLAY	7	65	0.5	NS	5.2	A2
TP17 0.90-1.00	5/5/2020	MEDIUM CLAY	7	56	0.4	NS	5.2	A2
TP17 1.50-1.60	5/5/2020	SANDY LOAM	9	160	1.4	NS	5.1	A2
TP18 0.40-0.50	5/5/2020	SANDY LOAM	9	19	0.2	NS	5.3	A2
TP18 0.90-1.00	5/5/2020	SANDY LOAM	9	25	0.2	NS	5.2	A2
TP18 1.30-1.40	5/5/2020	SANDY LOAM	9	28	0.3	NS	5.1	A2
TP26 0.40-0.50	4/5/2020	HEAVY CLAY	6	220	1.3	NS	4.6	A2
TP26 1.40-1.50	4/5/2020	HEAVY CLAY	6	780	4.7	MS	4	A2
TP27 0.40-0.50	4/5/2020	HEAVY CLAY	6	360	2.2	SS	4.8	A2
TP27 1.40-1.50	4/5/2020	HEAVY CLAY	6	480	2.9	SS	4.8	A2
TP28 0.40-0.50	4/5/2020	HEAVY CLAY	6	270	1.6	NS	4.7	A2
TP28 1.40-1.50	4/5/2020	HEAVY CLAY	6	300	1.8	NS	4.9	A2
TP29 0.40-0.50	4/5/2020	HEAVY CLAY	6	450	2.7	SS	4.9	A2
TP29 1.40-1.50	4/5/2020	SANDY LOAM	9	690	6.2	MS	5.6	A1
TP30 0.40-0.50	4/5/2020	HEAVY CLAY	6	210	1.3	NS	4.8	A2
TP30 1.40-1.50	4/5/2020	HEAVY CLAY	6	270	1.6	NS	5.6	A1
TP31 0.40-0.50	4/5/2020	HEAVY CLAY	6	42	0.3	NS	5.7	A1
TP31 1.40-1.50	4/5/2020	HEAVY CLAY	6	48	0.3	NS	5.1	A2
TP32 0.00-0.20	8/5/2020	LIGHT CLAY	9	31	0.3	NS	5.9	A1
TP32 0.40-0.50	8/5/2020	HEAVY CLAY	6	340	2.0	SS	5	A2
TP32 1.40-1.50	8/5/2020	MEDIUM CLAY	7	460	3.2	SS	5.7	A1
TP33 0.40-0.50	5/5/2020	HEAVY CLAY	6	400	2.4	SS	4.8	A2
TP33 1.40-1.50	5/5/2020	HEAVY CLAY	6	520	3.1	SS	4.7	A2
TP34 0.20-0.30	5/5/2020	HEAVY CLAY	6	220	1.3	NS	5.2	A2
TP34 0.40-0.50	5/5/2020	HEAVY CLAY	6	270	1.6	NS	5.1	A2
TP34 0.90-1.00	5/5/2020	HEAVY CLAY	6	320	1.9	NS	5	A2
TP34 1.40-1.50	5/5/2020	MEDIUM CLAY	7	280	2.0	NS	4.9	A2
TP34 1.90-2.00	5/5/2020	MEDIUM CLAY	7	370	2.6	SS	4.6	A2
TP35 0.40-0.50	4/5/2020	MEDIUM CLAY	7	57	0.4	NS	5.3	A2

5017200153

1/06/2020

Job No: Report Date:

Pires 140-160		4/5/0000	0.41/0.41						
FP85 49-150 85/2020 MEDIUM CLAY 7	TP35 1.40-1.50	4/5/2020	SANDY LOAM	9	60	0.5	NS	5.1	A2
PR27 (40-156									
PP37 140-150						_			
PP88 (A-0-50 85/2020 HEAVY CLAY 6									
PR98 494-150 85/2020 MEDIUM CLAY 7 540 3.8 SS 5.3 A2 PR99 0.090-100 85/2020 HEAVY CLAY 6 270 1.6 NS 5 A2 PR99 0.090-100 85/2020 SANDY LOAM 9 300 2.7 SS 5.3 A2 A2 A2 A2 A2 A2 A3 A3				-	_	_			
TP39 0.94-0.50									
TP39 140-150						-			
TP39 140-150						_			
TP39 1.90-2.00									
TP40 0.40-0.50	TP39 1.40-1.50				300	-		5.3	
TP40 1.40-1.50	TP39 1.90-2.00					5.4			
TP41 0.40-0.50	TP40 0.40-0.50	8/5/2020	HEAVY CLAY		56			5.4	
TP41 1.40-1.50	TP40 1.40-1.50	8/5/2020	SANDY LOAM	9	140	1.3	NS	5.1	A2
TP42 0.40-0.50	TP41 0.40-0.50	8/5/2020		6	360	2.2		5.5	A2
TP42 1.40-1.50	TP41 1.40-1.50	8/5/2020	HEAVY CLAY	6	530	3.2	SS	5.8	A1
TP450 0.40-0.50	TP42 0.40-0.50	5/5/2020	HEAVY CLAY	6	320	1.9	NS	4.8	A2
TP43 1.00 1.00 5/5/2020 HEAVY CLAY 6 370 2.2 SS 4.7 A2 TP43 1.00 1.00 5/5/2020 HEAVY CLAY 6 400 2.4 SS 4.9 A2 TP43 1.00 5/5/2020 MEDIUM CLAY 7 67 0.5 NS 5.6 A1 TP44 1.00 5.0 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.5 A2 TP45 1.00 5.0 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.5 A2 TP45 1.00 5.0 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.5 A2 TP45 1.20 5.0 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.3 A2 TP45 1.20 1.30 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 1.00 5.0 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 1.00 5.0 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 1.00 5.0 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.2 A2 TP47 1.00 5.0 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.2 A2 TP47 1.00 5.0 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.4 A2 TP47 1.00 5.0 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.4 A2 TP47 1.00 5.0 5/5/2020 MEDIUM CLAY 8 51 0.3 NS 5.4 A2 TP47 1.00 5.0 5/5/2020 MEDIUM CLAY 8 51 0.3 NS 5.4 A2 TP48 1.00 5.0 5/5/2020 MEDIUM CLAY 6 51 0.3 NS 5.4 A2 TP48 1.00 5.0 5/5/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP49 1.00 5.0 5/5/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP49 1.00 5.0 5/5/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP49 1.00 5.0 5/5/2020 SANDY LOAM 9 43 0.4 NS 5.4 A2 TP51 1.00 5.0 5/5/2020 MEDIUM CLAY 7 820 5.0 5 SS 5.1 A2 TP51 1.00 5.0 5/5/2020 MEDIUM CLAY 7 820 5.7 5/5 NS 4.6 A2 TP51 1.00 5.0 5/5/2020 MEDIUM CLAY 7 820 5.7 NS 4.6 A2 TP51 1.00 5.0 5/5/2020 MEDIUM CLAY 7 820 5.7 NS 4.6 A2 TP51 1.00 5.0 5/5/2020 MEDIUM CLAY 7 820 5.7 NS 4.6 A2 TP51 1.00 5.0 5/5/2020 MEDIUM CLAY 7 820 5.5 NS	TP42 1.40-1.50	5/5/2020	MEDIUM CLAY	7	260	1.8	NS	4.9	A2
TP43 1.40-1.50	TP43 0.40-0.50	5/5/2020	HEAVY CLAY	6	230		NS	5	A2
TP43 1.90-2.00 5/5/2020 HEAVY CLAY 6 400 2.4 SS 4.9 A2 TP44 0.40-50 5/5/2020 MEDIUM CLAY 7 67 0.5 NS 5.6 A1 TP44 1.40-150 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.5 A2 TP45 0.40-50 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.5 A2 TP45 1.20-130 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP45 0.40-50 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 0.40-50 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 0.40-50 5/5/2020 SANDY LOAM 9 100 0.9 NS 4.3 A2 TP47 0.40-50 5/5/2020 LIGHT CLAY 7 63 0.4 NS 5.2 A2 TP47 0.40-50 5/5/2020 LIGHT CLAY 9 49 0.4 NS 5.4 A2 TP47 0.40-50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40-50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40-50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40-50 5/5/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP49 0.40-50 8/5/2020 HEAVY CLAY 6 200 1.2 NS 5.1 A2 TP49 0.40-50 8/5/2020 HEAVY CLAY 6 720 4.3 MS 4.6 A2 TP59 0.40-50 8/5/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP59 0.40-50 8/5/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP59 0.40-50 8/5/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP59 0.40-50 8/5/2020 HEAVY CLAY 6 720 4.3 MS 4.6 A2 TP59 0.40-50 7/5/2020 HEAVY CLAY 6 800 4.1 MS 5.1 A2 TP51 0.40-50 7/5/2020 HEAVY CLAY 6 800 4.1 MS 5.1 A2 TP51 0.40-50 7/5/2020 HEAVY CLAY 6 800 4.1 MS 5.1 A2 TP51 0.40-50 7/5/2020 HEAVY CLAY 6 800 4.1 MS 5.1 A2 TP51 0.40-50 7/5/2020 HEAVY CLAY 6 800 4.1 MS 5.1 A2 TP51 0.40-50 7/5/2020 HEAVY CLAY 6 800 4.1 MS 5.1 A2 TP51 0.40-50 7/5/2020 HEAVY CLAY 6 800 4.1 MS 5.1 A2 TP51 0.40-50 7/5/2020 HEAVY CLAY 6 800 4.1 MS 5.5 MS 5.6 A1 TP50 0.40-50 7/5/2020 HEAVY CLAY 6 800 5.5 MS	TP43 0.90-1.00	5/5/2020	HEAVY CLAY	6	370	2.2	SS	5	A2
TP43 1.90 2.00 5/5/2020 HEAVY CLAY 6 400 2.4 SS 4.9 A2 TP44 0.40 50 5/5/2020 MEDIUM CLAY 7 67 0.5 NS 5.6 A1 TP44 1.40 1.50 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.5 A2 TP45 0.40 50 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.5 A2 TP45 1.20 1.30 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP45 0.40 50 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 0.40 50 5/5/2020 SANDY LOAM 9 100 0.9 NS 4.3 A2 TP46 0.40 50 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.4 A2 TP47 0.40 50 5/5/2020 LIGHT CLAY 9 49 0.4 NS 5.4 A2 TP47 0.40 50 5/5/2020 LIGHT CLAY 9 49 0.4 NS 5.4 A2 TP47 0.40 50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40 50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40 50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40 50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP49 0.40 50 5/5/2020 LIGHT CLAY 6 51 0.3 NS 5.4 A2 TP49 0.40 50 8/5/2020 HEAVY CLAY 6 700 1.2 NS 5.1 A2 TP49 0.40 50 8/5/2020 HEAVY CLAY 6 720 4.3 MS 4.6 A2 TP59 0.40 50 8/5/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP59 0.40 50 8/5/2020 SANDY LOAM 9 43 0.4 MS 5.2 A2 TP59 0.40 50 7/5/2020 HEAVY CLAY 6 700 4.3 MS 4.6 A2 TP59 0.40 50 7/5/2020 HEAVY CLAY 6 910 5.5 NS 5.4 A2 TP59 0.40 50 7/5/2020 HEAVY CLAY 6 910 5.5 NS 5.4 A2 TP59 0.40 50 7/5/2020 HEAVY CLAY 6 910 5.5 NS 5.4 A2 TP59 0.40 50 7/5/2020 HEAVY CLAY 6 910 5.5 NS 5.5 A3 A3 A3 A3 A3 A3 A3 A		5/5/2020	HEAVY CLAY	6	370		SS	4.7	A2
TP44 0.40-0.50 5/5/2020 MEDIUM CLAY 7 67 0.5 NS 5.6 A1 TP44 1.40-1.50 5/5/2020 MEDIUM CLAY 7 40 0.3 NS 5.5 A2 TP45 0.40-0.50 5/5/2020 MEDIUM CLAY 7 40 0.3 NS 5.3 A2 TP45 0.40-0.50 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 0.40-0.50 5/5/2020 SANDY LOAM 9 100 0.9 NS 4.3 A2 TP46 0.40-0.50 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.2 A2 TP47 0.40-0.50 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.2 A2 TP47 0.40-0.50 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.2 A2 TP47 1.40-1.50 5/5/2020 MEDIUM CLAY 9 49 0.4 NS 5.4 A2 TP47 1.40-1.50 5/5/2020 MEDIUM CLAY 9 80 0.7 NS 5.6 A1 TP48 1.40-1.50 5/5/2020 MEDIUM CLAY 9 80 0.7 NS 5.6 A1 TP48 1.40-1.50 5/5/2020 MEDIUM CLAY 9 80 0.7 NS 5.6 A1 A2 TP49 1.40-1.50 8/5/2020 MEDIUM CLAY 9 80 0.7 NS 5.6 A1 A2 TP49 1.40-1.50 8/5/2020 MEDIUM CLAY 6 720 4.3 MS 4.6 A2 TP49 1.40-1.50 8/5/2020 MEDIUM CLAY 6 720 4.3 MS 4.6 A2 TP50 1.40-0.50 8/5/2020 MEDIUM CLAY 6 720 4.3 MS 4.6 A2 TP50 1.40-0.50 8/5/2020 MEDIUM CLAY 6 910 5.5 NS 5.4 A2 TP50 1.40-0.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.4 A2 TP50 1.40-0.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.4 A2 TP50 1.40-0.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.7 A2 TP51 1.40-1.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.7 A2 TP51 1.40-1.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.7 A2 TP51 1.40-1.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.7 A2 TP51 1.40-1.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.7 A2 TP51 1.40-1.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.7 A2 TP51 1.40-1.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.7 A2 TP51 1.40-1.50 7/5/2020 MEDIUM CLAY 7 890 6.5 MS 3.4 A2 TP51 1.40-1.50 7/5/2020 MEDIUM CLAY 7 890			HEAVY CLAY			-		4.9	
TP441.40-1.50 5/5/2020 MEDIUM CLAY 7 46 0.3 NS 5.5 A2 TP45 1.20-1.30 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 1.20-1.30 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 0.40-50 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 0.40-50 5/5/2020 SANDY LOAM 9 52 0.5 NS 5 A2 TP46 0.40-50 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.2 A2 TP47 0.40-50 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.2 A2 TP47 0.40-50 5/5/2020 MEDIUM CLAY 9 49 0.4 NS 5.4 A2 TP47 0.40-50 5/5/2020 MEDIUM CLAY 9 80 0.7 NS 5.6 A1 A2 TP47 0.40-50 5/5/2020 MEDIUM CLAY 9 80 0.7 NS 5.6 A1 TP49 0.40-1.50 5/5/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP49 0.40-1.50 5/5/2020 MEDIUM CLAY 6 200 1.2 NS 5.1 A2 TP49 0.40-1.50 8/5/2020 MEDIUM CLAY 6 720 4.3 MS 4.6 A2 TP50 0.40-1.50 8/5/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP50 0.40-1.50 8/5/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP50 0.40-1.50 8/5/2020 MEDIUM CLAY 6 680 4.1 MS 5.1 A2 TP51 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP51 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP51 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7/5/2020 MEDIUM CLAY 7 700 1.2 NS 5.5 A2 TP53 0.40-0.50 7/5/2020 MEDIUM CLAY 7 700 1.2 NS 5.7 A1 TP53 0.40-0.50 7/5/2020 MEDIUM CLAY 7 700 1.2 NS 5.5 A2 TP54 0.40-0.50 7/5/2020 MEDIUM CLAY 7 700 1.2 NS 5.5 A2 TP55 0.40-0.50 7/5/2020 MEDIUM CLAY 7 700 1.2 NS 5.5 A2 TP55 0.40-0.50 7/5/2020 MEDIUM CLAY 7 700 1.2 NS 5.5 A1 TP56 0.40-0.50 7/5/2020 MEDIUM CLAY 7 700 5.0 NS 5.4 A2 TP55 0.40						_			
TP45 0.40-0.50 5/5/2020 MEDIUM CLAY 7 40 0.3 NS 5.3 A2			MEDIUM CLAY	7	46	0.3			
TP45 1.20-1.30 5.65/2020 SANDY LOAM 9 52 0.5 N8 5 A2 TP46 0.40-0.50 5.65/2020 MEDIUM CLAY 7 63 0.4 N8 5.2 A2 TP47 0.40-0.50 5.65/2020 MEDIUM CLAY 7 63 0.4 N8 5.2 A2 TP47 0.40-0.50 5.65/2020 MEDIUM CLAY 7 63 0.4 N8 5.2 A2 A2 TP47 0.40-0.50 5.65/2020 MEDIUM CLAY 9 49 0.4 N8 5.4 A2 A2 TP47 0.40-0.50 5.65/2020 MEDIUM CLAY 9 80 0.7 N8 5.6 A1 A2 TP49 0.40-0.50 5.65/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP49 0.40-0.50 8.65/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP49 0.40-0.50 8.65/2020 MEAVY GLAY 6 720 4.3 MS 4.6 A2 TP50 0.40-0.50 8.65/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP50 0.40-0.50 8.65/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP50 0.40-0.50 8.65/2020 MEAVY GLAY 6 680 4.1 MS 5.2 A2 TP51 0.40-0.50 7.65/2020 MEAVY GLAY 6 680 4.1 MS 5.2 A2 TP51 0.40-0.50 7.65/2020 MEDIUM CLAY 7 820 5.7 MS 4.8 A2 TP51 0.40-0.50 7.65/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP51 0.40-0.50 7.65/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7.65/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7.65/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7.65/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7.65/2020 MEDIUM CLAY 7 7 70 1.2 NS 5.5 A2 TP53 0.40-0.50 7.65/2020 MEDIUM CLAY 7 7 70 1.2 NS 5.5 A2 TP54 0.40-0.50 7.65/2020 MEDIUM CLAY 7 7 70 1.2 NS 5.5 A2 TP55 0.40-0.50 7.65/2020 MEDIUM CLAY 7 7 70 1.2 NS 5.5 A2 TP55 0.40-0.50 7.65/2020 MEDIUM CLAY 7 7 70 1.2 NS 5.5 A2 TP55 0.40-0.50 7.65/2020 MEDIUM CLAY 7 7 70 1.2 NS 5.5 A2 TP55 0.40-0.50 7.65/2020 MEDIUM CLAY 7 7 7 7 7 7 7 7 7						-			
TP46 0.40-0.50 \$5/5/2020 SANDY LOAM 9 100 0.9 NS 4.3 A2 TP46 0.70-0.80 \$5/5/2020 LIGHT CLAY 7 63 0.4 NS 5.2 A2 TP47 0.40-0.50 \$5/5/2020 LIGHT CLAY 9 49 0.4 NS 5.4 A2 TP47 1.40-1.50 \$5/5/2020 LIGHT CLAY 9 49 0.4 NS 5.4 A2 TP47 1.40-1.50 \$5/5/2020 HEAVY CLAY 6 51 0.3 NS 5.4 A2 TP48 0.40-0.50 \$5/5/2020 HEAVY CLAY 9 80 0.7 NS 5.6 A1 TP48 1.40-1.50 \$5/5/2020 SANDY LOAM 9 250 2.3 SS 5.1 A2 TP49 1.40-0.50 \$8/5/2020 HEAVY CLAY 6 200 1.2 NS 5.1 A2 TP49 1.40-0.50 \$8/5/2020 HEAVY CLAY 6 720 4.3 MS 4.6 A2 TP50 1.40-0.50 \$8/5/2020 SANDY LOAM 9 43 0.4 NS 5.2 A2 TP50 1.40-0.50 \$8/5/2020 SANDY LOAM 9 43 0.4 NS 5.2 A2 TP51 1.40-0.50 78/5/2020 SANDY LOAM 9 43 0.4 NS 5.2 A2 TP51 1.40-0.50 78/5/2020 HEAVY CLAY 6 800 4.1 MS 5.1 A2 TP51 1.40-0.50 78/5/2020 HEAVY CLAY 6 910 5.5 MS 4.8 A2 TP51 1.40-0.50 78/5/2020 HEAVY CLAY 6 910 5.5 MS 4.8 A2 TP51 1.40-0.50 78/5/2020 HEAVY CLAY 6 910 5.5 MS 4.8 A2 TP51 1.40-0.50 78/5/2020 HEAVY CLAY 6 910 5.5 MS 4.8 A2 TP51 1.40-0.50 78/5/2020 MEDIUM CLAY 7 930 6.5 MS 3.7 A2 TP52 0.40-0.50 78/5/2020 HEAVY CLAY 6 570 3.4 SS 5.6 A1 TP52 0.40-0.50 78/5/2020 HEAVY CLAY 6 570 3.4 SS 5.6 A1 TP53 0.40-0.50 78/5/2020 HEAVY CLAY 6 570 3.4 SS 5.6 A1 TP53 0.40-0.50 78/5/2020 HEAVY CLAY 6 570 3.4 SS 5.6 A1 TP53 0.40-0.50 78/5/2020 HEAVY CLAY 6 570 3.4 SS 5.6 A1 TP53 0.40-0.50 78/5/2020 HEAVY CLAY 6 600 4.0 SS 5.1 A2 TP54 0.40-0.50 78/5/2020 HEAVY CLAY 6 600 4.0 SS 5.1 A2 TP55 0.40-0.50 78/5/2020 HEAVY CLAY 6 600 4.0 SS 5.1 A2 TP55 0.40-0.50 78/5/2020 HEAVY CLAY 6 600 4.0 SS 5.1 A2 TP55 0.40-0.50 78/5/2020 HEAVY CLAY 6 600 4									
TP46 0.70-0.80 5/5/2020 MEDIUM CLAY 7 63 0.4 NS 5.2 A2 TP47 0.40-0.50 5/5/2020 HEAVY CLAY 6 51 0.3 NS 5.4 A2 TP47 0.40-0.50 5/5/2020 HEAVY CLAY 6 51 0.3 NS 5.4 A2 TP48 0.40-0.50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40-0.50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40-0.50 5/5/2020 LIGHT CLAY 9 80 0.7 NS 5.6 A1 TP48 0.40-0.50 8/5/2020 HEAVY CLAY 6 200 1.2 NS 5.1 A2 TP49 0.40-0.50 8/5/2020 HEAVY CLAY 6 720 4.3 MS 4.6 A2 TP50 0.40-0.50 8/5/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP50 0.40-0.50 8/5/2020 SANDY LOAM 9 51 0.5 NS 5.4 A2 TP50 0.40-0.50 7/5/2020 HEAVY CLAY 6 680 4.1 MS 5.2 A2 TP51 0.40-0.50 7/5/2020 HEAVY CLAY 6 680 4.1 MS 5.1 A2 TP51 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.8 A2 TP51 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.8 A2 TP51 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.8 A2 TP51 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7/5/2020 MEDIUM CLAY 7 820 5.7 MS 4.7 A2 TP52 0.40-0.50 7/5/2020 HEAVY CLAY 6 570 3.4 SS 5.6 A1 TP52 0.40-0.50 7/5/2020 HEAVY CLAY 6 570 3.4 SS 5.6 A1 TP53 0.40-0.50 7/5/2020 HEAVY CLAY 6 660 4.0 SS 5.1 A2 TP53 0.40-0.50 7/5/2020 HEAVY CLAY 6 660 4.0 SS 5.1 A2 TP54 0.40-0.50 7/5/2020 HEAVY CLAY 6 660 4.0 SS 5.1 A2 TP54 0.40-0.50 7/5/2020 HEAVY CLAY 6 660 4.0 SS 5.1 A2 TP55 0.40-0.50 7/5/2020 HEAVY CLAY 6 660 4.0 SS 5.1 A2 TP55 0.40-0.50 7/5/2020 HEAVY CLAY 6 660 4.0 SS 5.1 A2 TP55 0.40-0.50 7/5/2020 HEAVY CLAY 6 660 4.0 SS 5.1 A2 TP55 0.40-0.50 7/5/2020 HEAVY CLAY 6 660 4.0 SS 5.1 A2 T					_				
TP47 (1.40-1.50 5/5/2020						_			
TP471.40-1.50				•					
TP48 0.40-0.50						-			
TP48									
TP49 0.40-0.50									
TP49 1.40-1.50									
TP50 0.40-0.50							_		
TP50 1.40-1.50						-			
TP51 0.40-0.50									
TP51 0.90-1.00					_				
TP51 1.40-1.50						_			
TP51 1.90-2.00									
TP52 0.40-0.50 7/5/2020						-			
TP52 1.40-1.50						_			
TPS3 0.40-0.50 T/5/2020 HEAVY CLAY 6 910 5.5 MS 5.5 A2						_			
TP53 1.40-1.50						-			
TP54 0.40-0.50						_			
TP54									
TP55 0.40-0.50 7/5/2020 HEAVY CLAY 6 330 2.0 NS 5.4 A2 TP55 1.40-1.50 7/5/2020 LIGHT CLAY 9 560 5.0 MS 4.9 A2 TP56 0.40-0.50 7/5/2020 LIGHT CLAY 9 32 0.3 NS 5.9 A1 TP56 1.40-1.50 7/5/2020 HEAVY CLAY 6 450 2.7 SS 4.8 A2 TP57 0.40-0.50 7/5/2020 MEDIUM CLAY 7 600 4.2 MS 5.5 A2 TP57 1.40-1.50 7/5/2020 HEAVY CLAY 9 680 6.1 MS 5.9 A1 TP58 0.90-1.00 7/5/2020 HEAVY CLAY 6 460 2.8 SS 5.7 A1 TP58 1.40-1.50 7/5/2020 MEDIUM CLAY 7 530 3.7 SS 5.9 A1 TP58 1.90-2.00 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1									
TP55 1.40-1.50 7/5/2020 LIGHT CLAY 9 560 5.0 MS 4.9 A2 TP56 0.40-0.50 7/5/2020 LIGHT CLAY 9 32 0.3 NS 5.9 A1 TP56 1.40-1.50 7/5/2020 MEDIUM CLAY 7 600 4.2 MS 5.5 A2 TP57 1.40-1.50 7/5/2020 LIGHT CLAY 9 680 6.1 MS 5.9 A1 TP58 0.40-0.50 7/5/2020 LIGHT CLAY 9 680 6.1 MS 5.9 A1 TP58 0.40-0.50 7/5/2020 HEAVY CLAY 6 360 2.2 SS 5.6 A1 TP58 1.40-1.50 7/5/2020 MEDIUM CLAY 7 530 3.7 SS 5.9 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
TP56 0.40-0.50 7/5/2020 LIGHT CLAY 9 32 0.3 NS 5.9 A1 TP56 1.40-1.50 7/5/2020 HEAVY CLAY 6 450 2.7 SS 4.8 A2 TP57 0.40-0.50 7/5/2020 MEDIUM CLAY 7 600 4.2 MS 5.5 A2 TP57 1.40-1.50 7/5/2020 LIGHT CLAY 9 680 6.1 MS 5.9 A1 TP58 0.40-0.50 7/5/2020 HEAVY CLAY 6 360 2.2 SS 5.6 A1 TP58 1.40-1.50 7/5/2020 HEAVY CLAY 6 460 2.8 SS 5.7 A1 TP58 1.40-1.50 7/5/2020 MEDIUM CLAY 7 530 3.7 SS 5.9 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 <th></th> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>						-			
TP56 1.40-1.50									
TP57 0.40-0.50 7/5/2020 MEDIUM CLAY 7 600 4.2 MS 5.5 A2 TP57 1.40-1.50 7/5/2020 LIGHT CLAY 9 680 6.1 MS 5.9 A1 TP58 0.40-0.50 7/5/2020 HEAVY CLAY 6 360 2.2 SS 5.6 A1 TP58 0.90-1.00 7/5/2020 HEAVY CLAY 6 460 2.8 SS 5.7 A1 TP58 1.40-1.50 7/5/2020 MEDIUM CLAY 7 530 3.7 SS 5.9 A1 TP58 1.90-2.00 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP69 0.40-0.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.9 A1 <									
TP57 1.40-1.50 7/5/2020 LIGHT CLAY 9 680 6.1 MS 5.9 A1 TP58 0.40-0.50 7/5/2020 HEAVY CLAY 6 360 2.2 SS 5.6 A1 TP58 0.90-1.00 7/5/2020 HEAVY CLAY 6 460 2.8 SS 5.7 A1 TP58 1.40-1.50 7/5/2020 MEDIUM CLAY 7 530 3.7 SS 5.9 A1 TP58 1.90-2.00 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1 TP59 0.40-0.50 7/5/2020 HEAVY CLAY 6 600 3.6 SS 6.4 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 0.40-0.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
TP58 0.40-0.50 7/5/2020 HEAVY CLAY 6 360 2.2 SS 5.6 A1 TP58 0.90-1.00 7/5/2020 HEAVY CLAY 6 460 2.8 SS 5.7 A1 TP58 1.40-1.50 7/5/2020 MEDIUM CLAY 7 530 3.7 SS 5.9 A1 TP58 1.90-2.00 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1 TP59 0.40-0.50 7/5/2020 HEAVY CLAY 6 600 3.6 SS 6.4 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 0.40-0.50 7/5/2020 HEAVY CLAY 6 81 0.5 NS 6 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1						_			
TP58 0.90-1.00 7/5/2020 HEAVY CLAY 6 460 2.8 SS 5.7 A1 TP58 1.40-1.50 7/5/2020 MEDIUM CLAY 7 530 3.7 SS 5.9 A1 TP58 1.90-2.00 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1 TP59 1.40-1.50 7/5/2020 HEAVY CLAY 6 600 3.6 SS 6.4 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 0.40-0.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 1.40-1.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 TP61 0.90-1.00 7/5/2020 HEAVY CLAY 6 300 1.8 NS 5.2 A2 <									
TP58 1.40-1.50 7/5/2020 MEDIUM CLAY 7 530 3.7 SS 5.9 A1 TP58 1.90-2.00 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1 TP59 0.40-0.50 7/5/2020 HEAVY CLAY 6 600 3.6 SS 6.4 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 0.40-0.50 7/5/2020 HEAVY CLAY 6 81 0.5 NS 6 A1 TP60 1.40-1.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 TP61 0.90-1.00 7/5/2020 MEAVY CLAY 6 300 1.8 NS 5.2 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2						_			
TP58 1.90-2.00 7/5/2020 MEDIUM CLAY 7 620 4.3 MS 5.7 A1 TP59 0.40-0.50 7/5/2020 HEAVY CLAY 6 600 3.6 SS 6.4 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 0.40-0.50 7/5/2020 HEAVY CLAY 6 81 0.5 NS 6 A1 TP60 1.40-1.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 TP61 0.90-1.00 7/5/2020 HEAVY CLAY 6 300 1.8 NS 5.2 A2 TP61 1.40-1.50 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2									
TP59 0.40-0.50 7/5/2020 HEAVY CLAY 6 600 3.6 SS 6.4 A1 TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 0.40-0.50 7/5/2020 HEAVY CLAY 6 81 0.5 NS 6 A1 TP60 1.40-1.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 TP61 0.90-1.00 7/5/2020 HEAVY CLAY 6 300 1.8 NS 5.2 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2 TP62 1.40-1.50 7/5/2020 LIGHT CLAY 9 34 0.3 NS 5.7 A1									
TP59 1.40-1.50 7/5/2020 MEDIUM CLAY 7 450 3.2 SS 7.1 A1 TP60 0.40-0.50 7/5/2020 HEAVY CLAY 6 81 0.5 NS 6 A1 TP60 1.40-1.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 TP61 0.90-1.00 7/5/2020 HEAVY CLAY 6 300 1.8 NS 5.2 A2 TP61 1.40-1.50 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2 TP62 0.40-0.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.7 A1 TP63 0.40-0.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2						_			
TP60 0.40-0.50 7/5/2020 HEAVY CLAY 6 81 0.5 NS 6 A1 TP60 1.40-1.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 TP61 0.90-1.00 7/5/2020 HEAVY CLAY 6 300 1.8 NS 5.2 A2 TP61 1.40-1.50 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2 TP62 0.40-0.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.7 A1 TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2 TP63 1.40-1.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1									
TP60 1.40-1.50 7/5/2020 MEDIUM CLAY 7 860 6.0 MS 5.9 A1 TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 TP61 0.90-1.00 7/5/2020 HEAVY CLAY 6 300 1.8 NS 5.2 A2 TP61 1.40-1.50 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2 TP62 0.40-0.50 7/5/2020 LIGHT CLAY 9 34 0.3 NS 5.7 A1 TP62 1.40-1.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2 TP63 0.40-0.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1									
TP61 0.40-0.50 7/5/2020 MEDIUM CLAY 7 150 1.1 NS 5.7 A1 TP61 0.90-1.00 7/5/2020 HEAVY CLAY 6 300 1.8 NS 5.2 A2 TP61 1.40-1.50 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2 TP62 0.40-0.50 7/5/2020 LIGHT CLAY 9 34 0.3 NS 5.7 A1 TP62 1.40-1.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2 TP63 0.40-0.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1 TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 1000 6.0 MS 6 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1						-			
TP61 0.90-1.00 7/5/2020 HEAVY CLAY 6 300 1.8 NS 5.2 A2 TP61 1.40-1.50 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2 TP62 0.40-0.50 7/5/2020 LIGHT CLAY 9 34 0.3 NS 5.7 A1 TP62 1.40-1.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2 TP63 0.40-0.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1 TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 1000 6.0 MS 6 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1 TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1						-			
TP61 1.40-1.50 7/5/2020 HEAVY CLAY 6 310 1.9 NS 5.3 A2 TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2 TP62 0.40-0.50 7/5/2020 LIGHT CLAY 9 34 0.3 NS 5.7 A1 TP62 1.40-1.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2 TP63 0.40-0.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1 TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 1000 6.0 MS 6 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1 TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 730 5.1 MS 6.1 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1						_			
TP61 1.90-2.00 7/5/2020 HEAVY CLAY 6 280 1.7 NS 5.4 A2 TP62 0.40-0.50 7/5/2020 LIGHT CLAY 9 34 0.3 NS 5.7 A1 TP62 1.40-1.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2 TP63 0.40-0.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1 TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 1000 6.0 MS 6 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1 TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 730 5.1 MS 6.1 A1 TP64 1.40-1.50 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1									
TP62 0.40-0.50 7/5/2020 LIGHT CLAY 9 34 0.3 NS 5.7 A1 TP62 1.40-1.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2 TP63 0.40-0.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1 TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 1000 6.0 MS 6 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1 TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 730 5.1 MS 6.1 A1 TP64 1.40-1.50 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1									
TP62 1.40-1.50 7/5/2020 HEAVY CLAY 6 49 0.3 NS 5.5 A2 TP63 0.40-0.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1 TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 1000 6.0 MS 6 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1 TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 730 5.1 MS 6.1 A1 TP64 1.40-1.50 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1						_			
TP63 0.40-0.50 7/5/2020 LIGHT CLAY 9 250 2.3 SS 5.7 A1 TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 1000 6.0 MS 6 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1 TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 730 5.1 MS 6.1 A1 TP64 1.40-1.50 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1					_				
TP63 1.40-1.50 7/5/2020 HEAVY CLAY 6 1000 6.0 MS 6 A1 TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1 TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 730 5.1 MS 6.1 A1 TP64 1.40-1.50 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1						_			
TP64 0.40-0.50 7/5/2020 MEDIUM CLAY 7 440 3.1 SS 6.5 A1 TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 730 5.1 MS 6.1 A1 TP64 1.40-1.50 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1									
TP64 0.90-1.00 7/5/2020 MEDIUM CLAY 7 730 5.1 MS 6.1 A1 TP64 1.40-1.50 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1									
TP64 1.40-1.50 7/5/2020 MEDIUM CLAY 7 720 5.0 MS 6.7 A1 TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1						-			
TP64 1.90-2.00 7/5/2020 MEDIUM CLAY 7 590 4.1 MS 6.4 A1									
						_			
TP65 0.40-0.50 7/5/2020 LIGHT CLAY 9 47 0.4 NS 5.8 A1						_			
	TP65 0.40-0.50	7/5/2020	LIGHT CLAY	9	47	0.4	NS	5.8	A1

TP65 1.40-1.50	7/5/2020	HEAVY CLAY	6	100	0.6	NS	5.4	A2
TP66 0.40-0.50	6/5/2020	LIGHT CLAY	9	90	0.8	NS	5.7	A1
TP66 1.40-1.50	6/5/2020	MEDIUM CLAY	7	140	1.0	NS	5.2	A2
TP67 0.40-0.50	6/5/2020	LIGHT CLAY	9	110	1.0	NS	5.8	A1
TP67 1.40-1.50	6/5/2020	HEAVY CLAY	6	760	4.6	MS	4.2	A2
TP68 0.40-0.50	6/5/2020	MEDIUM CLAY	7	41	0.3	NS	5.7	A1
TP68 1.40-1.50	6/5/2020	LIGHT CLAY	9	51	0.5	NS	4.8	A2
TP69 0.40-0.50	6/5/2020	LIGHT CLAY	9	56	0.5	NS	5.6	A1
TP69 1.40-1.50	6/5/2020	SANDY LOAM	9	44	0.4	NS	5.5	A2
TP70 0.40-0.50	6/5/2020	LIGHT CLAY	9	40	0.4	NS	5.4	A2
TP70 1.40-1.50	6/5/2020	LIGHT CLAY	9	43	0.4	NS	5.1	A2
TP71 0.40-0.50	6/5/2020	HEAVY CLAY	6	460	2.8	SS	4.9	A2
TP71 1.40-1.50	6/5/2020	HEAVY CLAY	6	1400	8.4	VS	4.5	A2
TP72 0.40-0.50	6/5/2020	MEDIUM CLAY	7	48	0.3	NS	5.7	A1
TP72 1.40-1.50	6/5/2020	SANDY LOAM	9	28	0.3	NS	5.5	A2
TP73 0.40-0.50	6/5/2020	LIGHT CLAY	9	44	0.4	NS	5.8	A1
TP73 1.40-1.50	6/5/2020	SANDY LOAM	9	29	0.3	NS	5.7	A1
TP74 0.40-0.50	6/5/2020	HEAVY CLAY	6	300	1.8	NS	5.6	A1
TP74 1.40-1.50	6/5/2020	HEAVY CLAY	6	540	3.2	SS	5.1	A2
TP75 0.40-0.50	6/5/2020	HEAVY CLAY	6	290	1.7	NS	5.1	A2
TP75 1.40-1.50	6/5/2020	HEAVY CLAY	6	530	3.2	SS	4.8	A2
TP77 0.40-0.50	6/5/2020	HEAVY CLAY	6	490	2.9	SS	5.1	A2
TP77 1.40-1.50	6/5/2020	HEAVY CLAY	6	420	2.5	SS	5.2	A2
TP78 0.40-0.50	5/5/2020	HEAVY CLAY	6	100	0.6	NS	5.1	A2
TP78 1.40-1.50	5/5/2020	SANDY LOAM	9	690	6.2	MS	4.3	A2
TP79 0.40-0.50	6/5/2020	HEAVY CLAY	6	57	0.3	NS	5.3	A2
TP79 1.10-1.20	6/5/2020	SANDY LOAM	9	39	0.4	NS	5.6	A1
TP80 0.40-0.50	6/5/2020	HEAVY CLAY	6	190	1.1	NS	5.2	A2
TP80 0.90-1.00	6/5/2020	HEAVY CLAY	6	150	0.9	NS	5	A2
TP80 1.40-1.50	6/5/2020	HEAVY CLAY	6	89	0.5	NS	5.4	A2
TP80 1.90-2.00	6/5/2020	HEAVY CLAY	6	79	0.5	NS	5.4	A2
Salinity:	·	Non Saline (NS)	96	58.2%	pH:	pH_{MAX}	7.1	• —
		Slightly Saline (SS)	42	25.5%		pH_{MIN}	3.7	
	M	loderately Saline (MS)	26	15.8%		pH≤4.5	6	
		Highly Saline (HS)	0	0.0%		pH>4.5	110	pH≤5.5
		Very Saline (VS)	1	0.6%		pH>5.5	49	

Construction Sciences Pty Ltd 2/4 Kellogg Rd Glendenning NSW 2761

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Vipul DeSilva

Report 718184-S

Project name LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID 501700153

Received Date May 07, 2020

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP26 0.50M Soil S20-My10605 May 04, 2020	TP26 1.50M Soil S20-My10606 May 04, 2020	TP27 0.50M Soil S20-My10607 May 04, 2020	TP27 1.50M Soil S20-My10608 May 04, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	220	780	360	480
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.6	4.0	4.8	4.8

Client Sample ID			TP28 0.50M	TP28 1.50M	TP29 0.50M	TP29 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10609	S20-My10610	S20-My10611	S20-My10612
Date Sampled			May 04, 2020	May 04, 2020	May 04, 2020	May 04, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	270	300	450	690
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.7	4.9	4.9	5.6
% Moisture	1	%	-	13	21	-

Client Sample ID			TP30 0.50M	TP30 1.50M	TP31 0.50M	TP31 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10613	S20-My10614	S20-My10615	S20-My10616
Date Sampled			May 04, 2020	May 04, 2020	May 04, 2020	May 04, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	210	270	42	48
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.8	5.6	5.7	5.1
% Moisture	1	%	-	10	-	-

Client Sample ID Sample Matrix Eurofins Sample No.			TP35 0.50M Soil S20-My10617	TP35 1.50M Soil S20-My10618	TP14 0.50M Soil S20-My10619	TP14 1.50M Soil S20-My10620
Date Sampled			May 04, 2020	May 04, 2020	May 05, 2020	May 05, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	57	60	410	230
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.3	5.1	5.1	5.0
% Moisture	1	%	14	-	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP15 0.50M Soil S20-My10621 May 05, 2020	TP15 1.50M Soil S20-My10622 May 05, 2020	TP16 0.50M Soil S20-My10623 May 05, 2020	TP16 1.00M Soil S20-My10624 May 05, 2020
resurveience	LOIX	Offic				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	150	730	210	310
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.9	4.7	4.9	4.7
% Moisture	1	%	-	-	14	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP16 1.50M Soil S20-My10625 May 05, 2020	TP17 0.50M Soil S20-My10626 May 05, 2020	TP17 1.00M Soil S20-My10627 May 05, 2020	TP17 1.50M Soil S20-My10628 May 05, 2020
resurveicience	LOIK	Offic				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	500	65	56	160
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.5	5.2	5.2	5.1

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP18 0.50M Soil S20-My10629 May 05, 2020	TP18 1.00M Soil S20-My10630 May 05, 2020	TP18 1.40M Soil S20-My10631 May 05, 2020	TP33 0.50M Soil S20-My10632 May 05, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	19	25	28	400
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.3	5.2	5.1	4.8
% Moisture	1	%	-	12	-	-

Client Sample ID Sample Matrix			TP33 1.50M Soil	TP34 0.30M Soil	TP34 0.50M Soil	TP34 1.00M Soil
Eurofins Sample No.			S20-My10633	S20-My10634	S20-My10635	S20-My10636
Date Sampled			May 05, 2020	May 05, 2020	May 05, 2020	May 05, 2020
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	-	320	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	520	220	270	320
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.7	5.2	5.1	5.0
Sulphate (as SO4)	10	mg/kg	-	280	-	-
% Moisture	1	%	11	21	-	-

Client Sample ID			TP33 1.50M	TP34 0.30M	TP34 0.50M	TP34 1.00M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10633	S20-My10634	S20-My10635	S20-My10636
Date Sampled			May 05, 2020	May 05, 2020	May 05, 2020	May 05, 2020
Test/Reference	LOR	Unit				
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	12	-	-

Client Sample ID			TP34 1.50M	TP34 2.00M	TP42 0.50M	TP42 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10637	S20-My10638	S20-My10639	S20-My10640
Date Sampled			May 05, 2020	May 05, 2020	May 05, 2020	May 05, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	280	370	320	260
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.9	4.6	4.8	4.9

Client Sample ID Sample Matrix Eurofins Sample No.			TP43 0.50M Soil S20-My10641	TP43 1.00M Soil S20-My10642	TP43 1.50M Soil S20-My10643	TP43 2.00M Soil S20-My10644
Date Sampled			May 05, 2020	May 05, 2020	May 05, 2020	May 05, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	230	370	370	400
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.0	5.0	4.7	4.9

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP44 0.50M Soil S20-My10645 May 05, 2020	TP44 1.50M Soil S20-My10646 May 05, 2020	TP45 0.50M Soil S20-My10647 May 05, 2020	TP45 1.30M Soil S20-My10648 May 05, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	67	46	40	52
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.6	5.5	5.3	5.0
% Moisture	1	%	11	-	-	-

Client Sample ID Sample Matrix			TP46 0.50M Soil	TP46 0.80M Soil	TP47 0.50M Soil	TP47 1.50M Soil
Eurofins Sample No.			S20-My10649	S20-My10650	S20-My10651	S20-My10652
Date Sampled			May 05, 2020	May 05, 2020	May 05, 2020	May 05, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	100	63	49	51
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.3	5.2	5.4	5.4
% Moisture	1	%	-	-	-	15

Client Sample ID Sample Matrix			TP48 0.50M Soil	TP48 1.50M Soil	TP78 0.50M Soil	TP78 1.50M Soil
Eurofins Sample No.			S20-My10653	S20-My10654	S20-My10655	S20-My10656
Date Sampled			May 05, 2020	May 05, 2020	May 05, 2020	May 05, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	80	250	100	690
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.6	5.1	5.1	4.3
% Moisture	1	%	10	-	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	May 13, 2020	28 Days
- Method: E045 /E047 Chloride			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 14, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	May 13, 2020	28 Days
- Method: E045 Anions by Ion Chromatography			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	May 14, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	May 18, 2020	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	May 07, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Phone:

Fax:

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Construction Sciences Pty Ltd

2/4 Kellogg Rd

Glendenning

NSW 2761

Project Name:

Project ID:

LUDDENHAM ROAD ORCHARD HILLS HBB

501700153

Order No.: 501700153 Received: Report #: 718184 Due:

> 02 9854 1700 **Priority:** 1 Dav Vipul DeSilva **Contact Name:**

> > **Eurofins Analytical Services Manager: Ursula Long**

New Zealand

May 7, 2020 9:31 AM

May 18, 2020

		Sai	mple Detail			Chloride	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271							Х
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
		y - NATA Site #									
		NATA Site # 237	36								
	rnal Laboratory			1	_						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP26 0.50M	May 04, 2020		Soil	S20-My10605		Х	Х			
2	TP26 1.50M	May 04, 2020		Soil	S20-My10606		Х	Х			
3	TP27 0.50M	May 04, 2020		Soil	S20-My10607		Х	Х			
4	TP27 1.50M	May 04, 2020		Soil	S20-My10608		Х	Х			
5	TP28 0.50M	May 04, 2020		Soil	S20-My10609		Х	Х			
6	TP28 1.50M May 04, 2020 Soil S20-My10610							Х		Х	
7	TP29 0.50M	May 04, 2020		Soil	S20-My10611		Х	Х		Х	
8	TP29 1.50M	May 04, 2020		Soil	S20-My10612		Х	Х			
9	TP30 0.50M	May 04, 2020		Soil	S20-My10613		Х	Х			
10	TP30 1.50M	May 04, 2020		Soil	S20-My10614		Х	Х		Х	

Page 6 of 13

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID:

501700153

Order No.: 501700153 Report #: 718184

Phone: Fax:

02 9854 1700

Priority:

Brisbane

Received: May 7, 2020 9:31 AM

Due: May 18, 2020 1 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

		Sar	mple Detail			Chloride	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
		ory - NATA Site		71							Х
		- NATA Site # 1				Х	X	Х	Х	Х	Х
		ry - NATA Site #									
		NATA Site # 237	36	Γ							
11	TP31 0.50M	May 04, 2020		Soil	S20-My10615		Х	Х			
12	TP31 1.50M	May 04, 2020		Soil	S20-My10616		X	Х			
13	TP35 0.50M	May 04, 2020		Soil	S20-My10617		Х	Х		Х	
14	TP35 1.50M	May 04, 2020		Soil	S20-My10618		Х	Х			
15	TP14 0.50M	May 05, 2020		Soil	S20-My10619		Х	Х			
16	TP14 1.50M	May 05, 2020		Soil	S20-My10620		Х	Х			
17	TP15 0.50M	May 05, 2020		Soil	S20-My10621		Х	Х			
18	TP15 1.50M	May 05, 2020		Soil	S20-My10622		Х	Х			
19	TP16 0.50M	May 05, 2020		Soil	S20-My10623		Х	Х		Х	
20	TP16 1.00M	May 05, 2020		Soil	S20-My10624		Х	Х			
21	TP16 1.50M	May 05, 2020		Soil	S20-My10625		Х	Х			
22	TP17 0.50M	May 05, 2020		Soil	S20-My10626		Х	Х			
23	TP17 1.00M	May 05, 2020		Soil	S20-My10627		Х	Х			

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane Perth 1/21 Smallwood Place Kewdale WA 6105 Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 NATA # 1261

2/91 Leach Highway Phone: +61 8 9251 9600 Site # 23736

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID:

501700153

Order No.: 501700153 Report #:

Phone: Fax:

718184 02 9854 1700

Received: May 7, 2020 9:31 AM

Due: May 18, 2020 **Priority:** 1 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

New Zealand

35 O'Rorke Road

Penrose, Auckland 1061

Phone: +64 9 526 45 51

Auckland

IANZ # 1327

			mple Detail			Chloride	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
		ory - NATA Site		271							Х
		- NATA Site # 1				Х	Х	Х	Х	Х	X
		y - NATA Site #									
	1	NATA Site # 237	36	l							
24	TP17 1.50M	May 05, 2020		Soil	S20-My10628		X	X			
25	TP18 0.50M	May 05, 2020		Soil	S20-My10629		X	X			
26	TP18 1.00M	May 05, 2020		Soil	S20-My10630		X	Х		Х	
27	TP18 1.40M	May 05, 2020		Soil	S20-My10631		Х	Х			
28	TP33 0.50M	May 05, 2020		Soil	S20-My10632		Х	Х			
29	TP33 1.50M	May 05, 2020		Soil	S20-My10633		Х	Х		Х	
30	TP34 0.30M	May 05, 2020		Soil	S20-My10634	Х		Х	Х	Х	Х
31	TP34 0.50M	May 05, 2020		Soil	S20-My10635		Х	Х			
32	TP34 1.00M	May 05, 2020		Soil	S20-My10636		Х	Х			
33	TP34 1.50M	May 05, 2020		Soil	S20-My10637		Х	Х			
34	TP34 2.00M	May 05, 2020		Soil	S20-My10638		Х	Х			
35	TP42 0.50M	May 05, 2020		Soil	S20-My10639		Х	Х			
36	TP42 1.50M	May 05, 2020		Soil	S20-My10640		Х	Х			

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID:

501700153

Order No.: 501700153 Report #:

Phone: Fax:

718184 02 9854 1700

Received: May 7, 2020 9:31 AM Due:

May 18, 2020 **Priority:** 1 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Chloride	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
		ory - NATA Site		71							Х
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
		y - NATA Site #									
Pert	h Laboratory - I	NATA Site # 237	36	1							
37	TP43 0.50M	May 05, 2020		Soil	S20-My10641		Х	Х			
38	TP43 1.00M	May 05, 2020		Soil	S20-My10642		Х	Х			
39	TP43 1.50M	May 05, 2020		Soil	S20-My10643		Х	Х			
40	TP43 2.00M	May 05, 2020		Soil	S20-My10644		Х	Х			
41	TP44 0.50M	May 05, 2020		Soil	S20-My10645		Х	Х		Х	
42	TP44 1.50M	May 05, 2020		Soil	S20-My10646		Х	Х			
43	TP45 0.50M	May 05, 2020		Soil	S20-My10647		Х	Х			
44	TP45 1.30M	May 05, 2020		Soil	S20-My10648		Х	Х			
45	TP46 0.50M	May 05, 2020		Soil	S20-My10649		Х	Х			
46	TP46 0.80M	May 05, 2020		Soil	S20-My10650		Х	Х			
47	TP47 0.50M	May 05, 2020		Soil	S20-My10651		Х	Х			
48	TP47 1.50M	May 05, 2020		Soil	S20-My10652		Х	Х		Х	
49	TP48 0.50M	May 05, 2020		Soil	S20-My10653		Х	Х		Х	

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID:

501700153

Order No.: 501700153 Report #:

Phone:

718184 02 9854 1700

Fax:

Received: May 7, 2020 9:31 AM

Due: May 18, 2020

Priority: 1 Day **Contact Name:** Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail						Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71							Х
Sydr	ney Laboratory	- NATA Site # 1	8217			Χ	Х	Χ	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794								
Pertl	h Laboratory - N	IATA Site # 237	36								
50	TP48 1.50M	May 05, 2020		Soil	S20-My10654		Х	Х			
51	TP78 0.50M	May 05, 2020		Soil	S20-My10655		Х	Х			
52	TP78 1.50M	May 05, 2020		Soil	S20-My10656		Х	Χ			
Test	Counts					1	51	52	1	11	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Test			Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride			mg/kg	< 10			10	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 10			10	Pass	
LCS - % Recovery									
Chloride		%	106			70-130	Pass		
Conductivity (1:5 aqueous extract at 25°C as rec.)				108			70-130	Pass	
Sulphate (as SO4)				106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10609	СР	uS/cm	270	290	5.7	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10609	СР	pH Units	4.7	4.8	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-My10617	CP	%	14	18	25	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10619	СР	uS/cm	410	410	1.5	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10619	СР	pH Units	5.1	5.0	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10629	СР	uS/cm	19	20	5.6	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10629	СР	pH Units	5.3	5.4	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10639	СР	uS/cm	320	290	10	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10639	СР	pH Units	4.8	5.0	Pass	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

Ursula Long Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal (VIC)
Gabriele Cordero Senior Analyst-Inorganic (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 13 of 13

Construction Sciences Pty Ltd 2/4 Kellogg Rd Glendenning NSW 2761

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Vipul DeSilva

Report 718188-S

Project name LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID 5017200153

Received Date May 07, 2020

Client Sample ID			TP08 0.50M	TP08 1.50M	TP09 0.50M	TP09 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10657	S20-My10658	S20-My10659	S20-My10660
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	150	230	79	33
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.4	5.3	5.3	5.5
% Moisture	1	%	23	-	22	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP10 0.50M Soil S20-My10661 May 06, 2020	TP10 1.50M Soil S20-My10662 May 06, 2020	TP11 0.50M Soil S20-My10663 May 06, 2020	TP11 1.50M Soil S20-My10664 May 06, 2020
Chloride	10	mg/kg	-	-	71	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	400	430	53	360
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.4	5.5	5.8	4.9
Sulphate (as SO4)	10	mg/kg	-	-	19	-
% Moisture	1	%	19	-	21	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	13	-

Client Sample ID Sample Matrix			TP12 0.50M Soil	TP12 1.50M Soil	TP13 0.50M Soil	TP13 1.50M Soil
Eurofins Sample No.			S20-My10665	S20-My10666	S20-My10667	S20-My10668
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	53	140	200	280
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.8	5.1	4.9	5.8
% Moisture	1	%	22	-	21	21
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	16	-

Client Sample ID Sample Matrix			TP66 0.50M Soil	TP66 1.50M Soil	TP67 0.50M Soil	TP67 1.50M Soil
Eurofins Sample No.			S20-My10669	S20-My10670	S20-My10671	S20-My10672
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	-	-	-	1900
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	90	140	110	760
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.7	5.2	5.8	4.2
Sulphate (as SO4)	10	mg/kg	-	-	-	< 10
% Moisture	1	%	-	10	-	17
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	15	-	6.7

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Conductivity (1:5 aqueous extract at 25°C as rec.)		Unit	TP68 0.50M Soil S20-My10673 May 06, 2020	TP68 1.50M Soil S20-My10674 May 06, 2020	TP69 0.50M Soil S20-My10675 May 06, 2020	TP69 1.50M Soil S20-My10676 May 06, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	41	51	56	44
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.7	4.8	5.6	5.5
% Moisture	1	%	-	16	-	19

Client Sample ID			TP70 0.50M	TP70 1.50M	TP71 0.50M	TP71 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10677	S20-My10678	S20-My10679	S20-My10680
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	40	43	460	1400
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.4	5.1	4.9	4.5
% Moisture	1	%	30	-	15	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	8.5	-	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP72 0.50M Soil S20-My10681 May 06, 2020	TP72 1.50M Soil S20-My10682 May 06, 2020	TP73 0.50M Soil S20-My10683 May 06, 2020	TP73 1.50M Soil S20-My10684 May 06, 2020
Chloride	10	mg/kg	28	-	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	48	28	44	29
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.7	5.5	5.8	5.7
Sulphate (as SO4)	10	mg/kg	50	-	-	-
% Moisture	1	%	19	-	21	14
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	-	9.1

Client Sample ID Sample Matrix			TP74 0.50M Soil	TP74 1.50M Soil	TP75 0.50M Soil	TP75 1.50M Soil
Eurofins Sample No.			S20-My10685	S20-My10686	S20-My10687	S20-My10688
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	300	540	290	530
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.6	5.1	5.1	4.8
% Moisture	1	%	23	-	-	16

Client Sample ID			TP77 0.50M	TP77 1.50M	TP79 0.50M	TP79 1.20M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10689	S20-My10690	S20-My10691	S20-My10692
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	-	-	-	32
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	490	420	57	39
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.1	5.2	5.3	5.6
Sulphate (as SO4)	10	mg/kg	-	-	-	26
% Moisture	1	%	-	16	-	11

Client Sample ID Sample Matrix			TP80 0.50M Soil	TP80 1.00M Soil	TP80 1.50M Soil	TP80 2.00M Soil
Eurofins Sample No.			S20-My10693	S20-My10694	S20-My10695	S20-My10696
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	-	-	93	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	190	150	89	79
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.2	5.0	5.4	5.4
Sulphate (as SO4)	10	mg/kg	-	=	40	-
% Moisture	1	%	-	16	14	13
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	-	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	May 12, 2020	28 Days
- Method: E045 /E047 Chloride			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 13, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	May 12, 2020	28 Days
- Method: E045 Anions by Ion Chromatography			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	May 13, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	May 14, 2020	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	May 08, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Phone:

Fax:

Site # 1254 & 14271

Australia

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

02 9854 1700

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Construction Sciences Pty Ltd

2/4 Kellogg Rd Address: Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID: 5017200153 Order No.: 5017200153 Received: May 7, 2020 9:31 AM Report #: 718188 Due: May 14, 2020

> **Priority:** 5 Dav

Vipul DeSilva **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

Auckland

IANZ # 1327

		hloride	onductivity (1:5 aqueous extract at 25°C as	H (1:5 Aqueous extract at 25°C as rec.)	ulphate (as SO4)	loisture Set	ation Exchange Capacity				
Melb	ourne Laborato					Х	Х				
Sydı	Sydney Laboratory - NATA Site # 18217								Х	Х	Х
Bris	Brisbane Laboratory - NATA Site # 20794										
Pert	h Laboratory - N	NATA Site # 237	36								
Exte	rnal Laboratory	<u> </u>									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP08 0.50M	May 06, 2020		Soil	S20-My10657		Х	Х		Х	
2	TP08 1.50M	May 06, 2020		Soil	S20-My10658		Х	Х			
3	TP09 0.50M	May 06, 2020		Soil	S20-My10659		Х	Х		Х	
4	TP09 1.50M	May 06, 2020		Soil	S20-My10660		Х	Х			
5							Х	Х		Х	
6	TP10 1.50M	50M May 06, 2020 Soil S20-My10662						Х			
7	TP11 0.50M May 06, 2020 Soil S20-My10663							Х	Х	Х	Х
8	B TP11 1.50M May 06, 2020 Soil S20-My10664							Х			
9	9 TP12 0.50M May 06, 2020 Soil S20-My10665									Х	
10	TP12 1.50M	May 06, 2020		Soil	S20-My10666		Х	Χ			

Page 5 of 11

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID:

5017200153

Order No.: 5017200153

Report #: Phone:

718188 02 9854 1700

Fax:

Received: May 7, 2020 9:31 AM

Due: May 14, 2020

Priority: 5 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

Sample Detail								pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
	ourne Laborato					Х	Х				
	ney Laboratory					Х	Х	Х	Х	Х	Х
	bane Laborator										
	h Laboratory - N		36	ı							
11	TP13 0.50M	May 06, 2020		Soil	S20-My10667			Х		Х	Х
12	TP13 1.50M	May 06, 2020		Soil	S20-My10668		Х	Х		Х	
13	TP66 0.50M	May 06, 2020		Soil	S20-My10669		Х	Х			
14	TP66 1.50M	May 06, 2020		Soil	S20-My10670			Х		Х	Х
15	TP67 0.50M	May 06, 2020		Soil	S20-My10671		Х	Х			
16	TP67 1.50M	May 06, 2020		Soil	S20-My10672	Х		Х	Х	Х	Х
17	TP68 0.50M	May 06, 2020		Soil	S20-My10673		Х	Х			
18	TP68 1.50M	May 06, 2020		Soil	S20-My10674		Х	Х		Х	
19	TP69 0.50M	May 06, 2020		Soil	S20-My10675		Х	Х			
20	TP69 1.50M	May 06, 2020		Soil	S20-My10676		Х	Х		Х	
21	TP70 0.50M	May 06, 2020		Soil	S20-My10677			Х		Х	Х
22	TP70 1.50M	May 06, 2020		Soil	S20-My10678		Х	Х			
23	TP71 0.50M	May 06, 2020		Soil	S20-My10679		Х	Х		Х	

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

02 9854 1700

Brisbane Perth 1/21 Smallwood Place Kewdale WA 6105 Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Auckland 2/91 Leach Highway 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 9251 9600 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

Address: 2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID:

5017200153

Order No.: 5017200153 Report #: 718188

Phone: Fax:

Received: May 7, 2020 9:31 AM

Due: May 14, 2020 **Priority:** 5 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

Sample Detail								pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
Mell	Melbourne Laboratory - NATA Site # 1254 & 14271									Х	Х
		- NATA Site # 1				Х	Х	Х	Х	Х	Х
		y - NATA Site #									
	1	NATA Site # 237	36	1							
24	TP71 1.50M	May 06, 2020		Soil	S20-My10680		Х	Х			
25	TP72 0.50M	May 06, 2020		Soil	S20-My10681	Х	X	Х	Х	Х	
26	TP72 1.50M	May 06, 2020		Soil	S20-My10682		Х	Х			
27	TP73 0.50M	May 06, 2020		Soil	S20-My10683		Х	Х		Х	
28	TP73 1.50M	May 06, 2020		Soil	S20-My10684			Х		Х	Х
29	TP74 0.50M	May 06, 2020		Soil	S20-My10685		Х	Х		Х	
30	TP74 1.50M	May 06, 2020		Soil	S20-My10686		Х	Х			
31	TP75 0.50M	May 06, 2020		Soil	S20-My10687		Х	Х			
32	TP75 1.50M	May 06, 2020		Soil	S20-My10688		Х	Х		Х	
33	TP77 0.50M	May 06, 2020		Soil	S20-My10689		Х	Х			
34	TP77 1.50M	May 06, 2020		Soil	S20-My10690		Х	Х		Х	
35	TP79 0.50M	May 06, 2020		Soil	S20-My10691		Х	Х			
36	TP79 1.20M	May 06, 2020		Soil	S20-My10692	Х	Х	Х	Х	Х	

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

May 7, 2020 9:31 AM

May 14, 2020

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID: 5017200153 Order No.: 5017200153 Report #:

Phone: Fax:

718188 02 9854 1700

Priority: 5 Day **Contact Name:** Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail						Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
Melb	ourne Laborat	ory - NATA Site	# 1254 & 142	71						Х	Х
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Brisl	bane Laborator	y - NATA Site #	20794								
Perti	h Laboratory - I	NATA Site # 237	36								
37	TP80 0.50M	May 06, 2020		Soil	S20-My10693		Х	Х			
38	TP80 1.00M	May 06, 2020		Soil	S20-My10694		Х	Х		Χ	
39	TP80 1.50M	May 06, 2020		Soil	S20-My10695	Х	Х	Х	Х	Х	
40	TP80 2.00M	May 06, 2020		Soil	S20-My10696			Х		Х	Х
Test	Counts					5	33	40	5	23	7

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					<u>'</u>		1		
Chloride			mg/kg	< 10			10	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 10			10	Pass	
LCS - % Recovery									
Chloride			%	101			70-130	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	108			70-130	Pass	
Sulphate (as SO4)			%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					,				
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10657	СР	uS/cm	150	150	1.1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10657	СР	pH Units	5.4	5.4	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10660	СР	uS/cm	33	36	7.2	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10660	СР	pH Units	5.5	5.4	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10670	СР	uS/cm	140	140	2.1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10670	СР	pH Units	5.2	5.1	Pass	30%	Pass	
% Moisture	S20-My10670	CP	%	10	12	17	30%	Pass	
Duplicate					1				
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10680	СР	uS/cm	1400	1400	4.3	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10680	СР	pH Units	4.5	4.6	Pass	30%	Pass	
Duplicate					1				
				Result 1	Result 2	RPD			
Chloride	S20-My10681	CP	mg/kg	28	24	14	30%	Pass	
Sulphate (as SO4)	S20-My10681	CP	mg/kg	50	58	15	30%	Pass	
Duplicate									
		1		Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10688	СР	uS/cm	530	550	3.9	30%	Pass	
% Moisture	S20-My10688	СР	%	16	17	9.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10690	СР	uS/cm	420	410	2.1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10690	СР	pH Units	5.2	5.2	Pass	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

Ursula Long Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal (VIC)
Gabriele Cordero Senior Analyst-Inorganic (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 11 of 11

Construction Sciences Pty Ltd 2/4 Kellogg Rd Glendenning NSW 2761

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Vipul DeSilva

Report 718228-S

Project name LUDDENHAM RD ORCHARD HILLS HBB

Project ID 5017200153

Received Date May 07, 2020

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP01 0.50M Soil S20-My10924 May 07, 2020	TP01 1.50M Soil S20-My10925 May 07, 2020	TP02 0.50M Soil S20-My10926 May 07, 2020	TP02 1.50M Soil S20-My10927 May 07, 2020
		1				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	890	950	120	800
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.8	5.3	5.6	6.2
% Moisture	1	%	-	20	-	-

Client Sample ID			TP03 0.50M	TP03 1.50M	TP04 0.50M	TP04 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10928	S20-My10929	S20-My10930	S20-My10931
Date Sampled			May 07, 2020	May 07, 2020	May 07, 2020	May 07, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	130	470	330	470
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.5	4.8	5.3	4.3
% Moisture	1	%	-	-	23	_

Client Sample ID			TP05 0.50M	TP05 1.50M	TP06 0.50M	TP06 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10932	S20-My10933	S20-My10934	S20-My10935
Date Sampled			May 07, 2020	May 07, 2020	May 07, 2020	May 07, 2020
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	-	51	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	93	72	580	990
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.5	5.8	6.0	6.3
Sulphate (as SO4)	10	mg/kg	-	12	=	-
% Moisture	1	%	6.2	-	=	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	13	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP07 0.50M Soil S20-My10936 May 07, 2020	TP07 1.50M Soil S20-My10937 May 07, 2020	TP51 0.50M Soil S20-My10938 May 07, 2020	TP51 1.00M Soil S20-My10939 May 07, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	140	890	680	910
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.5	4.9	5.1	4.8
% Moisture	1	%	-	-	-	27

Client Sample ID			TP51 1.50M	TP51 2.00M	TP52 0.50M	TP52 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10940	S20-My10941	S20-My10942	S20-My10943
Date Sampled			May 07, 2020	May 07, 2020	May 07, 2020	May 07, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	820	930	130	270
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.7	3.7	5.7	5.6
% Moisture	1	%	-	15	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TP53 0.50M Soil S20-My10944 May 07, 2020	TP53 1.50M Soil S20-My10945 May 07, 2020	TP54 0.50M Soil S20-My10946 May 07, 2020	TP54 1.50M Soil S20-My10947 May 07, 2020
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	-	-	-	270
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	910	660	170	250
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.5	5.1	6.5	5.2
Sulphate (as SO4)	10	mg/kg	-	-	-	35
% Moisture	1	%	-	-	15	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	-	21

Client Sample ID Sample Matrix			TP55 0.50M Soil	TP55 1.50M Soil	TP56 0.50M Soil	TP56 1.50M Soil
Eurofins Sample No.			S20-My10948	S20-My10949	S20-My10950	S20-My10951
Date Sampled			May 07, 2020	May 07, 2020	May 07, 2020	May 07, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	330	560	32	450
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.4	4.9	5.9	4.8
% Moisture	1	%	-	10	-	-

Client Sample ID Sample Matrix			TP57 0.50M Soil	TP57 1.50M Soil	TP58 0.50M Soil	TP58 1.00M Soil
Eurofins Sample No.			S20-My10952	S20-My10953	S20-My10954	S20-My10955
Date Sampled			May 07, 2020	May 07, 2020	May 07, 2020	May 07, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	600	680	360	460
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.5	5.9	5.6	5.7
% Moisture	1	%	-	18	-	-

Client Sample ID Sample Matrix Eurofins Sample No.			TP58 1.50M Soil S20-My10956	TP58 2.00M Soil S20-My10957	TP59 0.50M Soil S20-My10958	TP59 1.50M Soil S20-My10959
Date Sampled			May 07, 2020	May 07, 2020	May 07, 2020	May 07, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	530	620	600	450
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.9	5.7	6.4	7.1
% Moisture	1	%	-	-	14	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP60 0.50M Soil S20-My10960 May 07, 2020	TP60 1.50M Soil S20-My10961 May 07, 2020	TP61 0.50M Soil S20-My10962 May 07, 2020	TP61 1.50M Soil S20-My10963 May 07, 2020
	!	- 11				
Chloride	10	mg/kg	16	-	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	81	860	150	310
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.0	5.9	5.7	5.3
Sulphate (as SO4)	10	mg/kg	36	-	-	-
% Moisture	1	%	-	9.9	-	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	14	-	-	-

Client Sample ID			TP62 0.50M	TP62 1.50M	TP63 0.50M	TP63 1.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My10964	S20-My10965	S20-My10966	S20-My10967
Date Sampled			May 07, 2020	May 07, 2020	May 07, 2020	May 07, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	34	49	250	1000
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.7	5.5	5.7	6.0

Client Sample ID Sample Matrix Eurofins Sample No.			TP64 0.50M Soil S20-My10968	TP64 1.00M Soil S20-My10969	TP64 1.50M Soil S20-My10970	TP64 2.00M Soil S20-My10971
Date Sampled			May 07, 2020	May 07, 2020	May 07, 2020	May 07, 2020
Test/Reference	LOR	Unit				
	·	·				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	440	730	720	590
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.5	6.1	6.7	6.4

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP65 0.50M Soil S20-My10972 May 07, 2020	TP65 1.50M Soil S20-My10973 May 07, 2020	TP61 1.00 Soil S20-My11388 May 07, 2020	TP61 2.00 Soil S20-My11389 May 07, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	47	100	300	280
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.8	5.4	5.2	5.4

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	May 13, 2020	28 Days
- Method: E045 /E047 Chloride			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 14, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	May 13, 2020	28 Days
- Method: E045 Anions by Ion Chromatography			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	May 14, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	May 14, 2020	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	May 08, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

Construction Sciences Pty Ltd

2/4 Kellogg Rd

Glendenning

NSW 2761

Project Name:

LUDDENHAM RD ORCHARD HILLS HBB

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Project ID: 5017200153 Order No.: Report #:

718228

02 9854 1700

Sydney

Phone: Fax:

Received: May 7, 2020 8:56 PM Due:

May 14, 2020 **Priority:** 5 Dav

Vipul DeSilva **Contact Name:**

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Chloride	Conductivity (1:5 aqueous extract at 25°C as ec.)	н (1:5 Aqueous extract at 25°C as rec.)	sulphate (as SO4)	Noisture Set	ation Exchange Capacity				
Melk	ourne Laborate						Х				
Sydı	Sydney Laboratory - NATA Site # 18217								Х	Х	Х
Bris	Brisbane Laboratory - NATA Site # 20794										Ш
Pert	h Laboratory - I	NATA Site # 237	36								Ш
Exte	rnal Laboratory	/			i						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP01 0.50M	May 07, 2020		Soil	S20-My10924		Х	Х			
2	TP01 1.50M	May 07, 2020		Soil	S20-My10925		Х	Х		Х	
3	TP02 0.50M	May 07, 2020		Soil	S20-My10926		Х	Х			
4	TP02 1.50M	May 07, 2020		Soil	S20-My10927		Х	Х			
5	TP03 0.50M	May 07, 2020		Soil	S20-My10928		Х	Х			
6	TP03 1.50M	May 07, 2020		Soil	S20-My10929		Х	Х			
7	TP04 0.50M	May 07, 2020		Soil	S20-My10930		Х	Х		Х	
8	TP04 1.50M	May 07, 2020		Soil	S20-My10931		Х	Х			\sqcup
9	TP05 0.50M	May 07, 2020		Soil	S20-My10932		Х	Х		Х	\sqcup
10	TP05 1.50M	May 07, 2020		Soil	S20-My10933	Х		Х	Х		Χ

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM RD ORCHARD HILLS HBB

Project ID: 5017200153 Order No.: Report #:

718228

02 9854 1700

Phone: Fax:

Received: May 7, 2020 8:56 PM

Due: May 14, 2020 **Priority:** 5 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail								Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
	Melbourne Laboratory - NATA Site # 1254 & 14271										Х
	Sydney Laboratory - NATA Site # 18217						Х	Х	Х	Х	Х
		y - NATA Site #									
		NATA Site # 237	36	1							
11	TP06 0.50M	May 07, 2020		Soil	S20-My10934		Х	Х			
12	TP06 1.50M	May 07, 2020		Soil	S20-My10935		Х	Х			
13	TP07 0.50M	May 07, 2020		Soil	S20-My10936		Х	Х			
14	TP07 1.50M	May 07, 2020		Soil	S20-My10937		Х	Х			
15	TP51 0.50M	May 07, 2020		Soil	S20-My10938		Х	Х			
16	TP51 1.00M	May 07, 2020		Soil	S20-My10939		Х	Х		Х	
17	TP51 1.50M	May 07, 2020		Soil	S20-My10940		Х	Х			
18	TP51 2.00M	May 07, 2020		Soil	S20-My10941		Х	Х		Х	
19	TP52 0.50M	May 07, 2020		Soil	S20-My10942		Х	Х			
20	TP52 1.50M	May 07, 2020		Soil	S20-My10943		Х	Х			
21	TP53 0.50M	May 07, 2020		Soil	S20-My10944		Х	Х			
22	TP53 1.50M	May 07, 2020		Soil	S20-My10945		Х	Х			
23	TP54 0.50M	May 07, 2020		Soil	S20-My10946		Х	Х		Х	

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327

IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

Address: 2/4 Kellogg Rd

Glendenning

NSW 2761

Project Name:

LUDDENHAM RD ORCHARD HILLS HBB

Project ID:

5017200153

Order No.:

Report #: 718228

02 9854 1700

Phone: Fax:

Received: May 7, 2020 8:56 PM

Due: May 14, 2020 **Priority:** 5 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

		Sa		Chloride	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity		
Mel	lelbourne Laboratory - NATA Site # 1254 & 14271										Х
Syd	Sydney Laboratory - NATA Site # 18217						Х	Х	Х	Х	Х
Bris	bane Laborato	ry - NATA Site #	20794								
Pert	h Laboratory -	NATA Site # 237	' 36								
24	TP54 1.50M	May 07, 2020		Soil	S20-My10947	Х		Х	Х		Х
25	TP55 0.50M	May 07, 2020		Soil	S20-My10948		Х	Х			
26	TP55 1.50M	May 07, 2020		Soil	S20-My10949		Х	Х		Х	
27	TP56 0.50M	May 07, 2020		Soil	S20-My10950		Х	Х			
28	TP56 1.50M	May 07, 2020		Soil	S20-My10951		Х	Х			
29	TP57 0.50M	May 07, 2020		Soil	S20-My10952		Х	Х			
30	TP57 1.50M	May 07, 2020		Soil	S20-My10953		Х	Х		Х	
31	TP58 0.50M	May 07, 2020		Soil	S20-My10954		Х	Х			
32	TP58 1.00M	May 07, 2020		Soil	S20-My10955		Х	Х			
33	TP58 1.50M	May 07, 2020		Soil	S20-My10956		Х	Х			
34	TP58 2.00M	May 07, 2020		Soil	S20-My10957		Х	Х			
35	TP59 0.50M	May 07, 2020		Soil	S20-My10958		Х	Х		Х	
36	TP59 1.50M	May 07, 2020		Soil	S20-My10959		Х	Х			

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327

IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

Address: 2/4 Kellogg Rd

Glendenning

NSW 2761

Project Name:

LUDDENHAM RD ORCHARD HILLS HBB

Project ID:

5017200153

Order No.:

Report #: 718228 02 9854 1700

Phone: Fax:

Received: May 7, 2020 8:56 PM Due:

May 14, 2020 **Priority:** 5 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail								Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
	Melbourne Laboratory - NATA Site # 1254 & 14271										Х
	Sydney Laboratory - NATA Site # 18217						Х	Х	Х	Х	X
		ry - NATA Site #									\vdash
	1	NATA Site # 237	36	l							
37	TP60 0.50M	May 07, 2020		Soil	S20-My10960	Х	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X	Х		X
38	TP60 1.50M	May 07, 2020		Soil	S20-My10961		X	X		Х	\vdash
39	TP61 0.50M	May 07, 2020		Soil	S20-My10962		X	X			-
40	TP61 1.50M	May 07, 2020		Soil	S20-My10963		X	X			
41	TP62 0.50M	May 07, 2020		Soil	S20-My10964		X	X			
42	TP62 1.50M	May 07, 2020		Soil	S20-My10965		X	X			
43	TP63 0.50M	May 07, 2020		Soil	S20-My10966		X	X			
44	TP63 1.50M	May 07, 2020		Soil	S20-My10967		Х	Х			\vdash
45	TP64 0.50M	May 07, 2020		Soil	S20-My10968		X	Х			-
46	TP64 1.00M	May 07, 2020		Soil	S20-My10969		Х	Х	-		-
47	TP64 1.50M	May 07, 2020		Soil	S20-My10970		Х	Х			\sqcup
48	TP64 2.00M	May 07, 2020		Soil	S20-My10971		Х	Х			\sqcup
49	TP65 0.50M	May 07, 2020		Soil	S20-My10972		Х	Χ			

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM RD ORCHARD HILLS HBB

Project ID:

5017200153

Order No.:

Report #:

718228 02 9854 1700

Phone: Fax:

Received: May 7, 2020 8:56 PM Due: May 14, 2020

Priority: 5 Day

Contact Name: Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

Sample Detail						Chloride	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71							Х
Sydr	ney Laboratory	- NATA Site # 1	8217			Χ	Х	Χ	Χ	Χ	Х
Brisl	oane Laboratory	y - NATA Site #	20794								
Perti	Laboratory - N	ATA Site # 237	36								
50	TP65 1.50M	May 07, 2020		Soil	S20-My10973		Х	Х			
51	TP61 1.00	May 07, 2020		Soil	S20-My11388		Х	Х			
52	TP61 2.00	May 07, 2020		Soil	S20-My11389		Х	Х			
Test	Test Counts						49	52	3	10	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					<u>'</u>				
Chloride			mg/kg	< 10			10	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10			10	Pass	
Sulphate (as SO4)	,		mg/kg	< 10			10	Pass	
LCS - % Recovery									
Chloride			%	101			70-130	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	108			70-130	Pass	
Sulphate (as SO4)	,		%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		<u> </u>							
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10924	СР	uS/cm	890	790	12	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10924	СР	pH Units	5.8	5.8	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-My10925	СР	%	20	18	13	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S20-My10681	NCP	mg/kg	28	24	14	30%	Pass	
Sulphate (as SO4)	S20-My10681	NCP	mg/kg	50	58	15	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10936	СР	uS/cm	140	150	2.5	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10936	СР	pH Units	5.5	5.5	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10949	СР	uS/cm	560	570	<1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10949	СР	pH Units	4.9	4.9	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10954	СР	uS/cm	360	350	2.9	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10954	СР	pH Units	5.6	5.9	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10956	СР	uS/cm	530	480	9.6	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10956	СР	pH Units	5.9	5.9	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10965	СР	uS/cm	49	55	10	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10965	СР	pH Units	5.5	5.4	Pass	30%	Pass	

Duplicate										
Result 1 Result 2 RPD										
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My10967	СР	uS/cm	1000	1000	2.7	30%	Pass		
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My10967	СР	pH Units	6.0	6.2	Pass	30%	Pass		

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised By

Ursula Long Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal (VIC)
Gabriele Cordero Senior Analyst-Inorganic (NSW)
Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Construction Sciences Pty Ltd 2/4 Kellogg Rd Glendenning NSW 2761

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Vipul DeSilva

Report 718526-S

Project name LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID 5017200153

Received Date May 08, 2020

Client Sample ID			TP32 0.20M	TP32 0.50M	TP32 1.50M	TP36 0.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My13360	S20-My13361	S20-My13362	S20-My13363
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	12	-	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	31	340	460	260
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.9	5.0	5.7	4.8
Sulphate (as SO4)	10	mg/kg	< 10	-	-	-
% Moisture	1	%	15	19	15	22
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	5.5	-	=	-

Client Sample ID Sample Matrix Eurofins Sample No.			TP36 1.50M Soil S20-My13364	TP39 0.50M Soil S20-My13365	TP39 1.00M Soil S20-My13366	TP39 1.50M Soil S20-My13367
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	420	270	270	300
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.3	5.1	5.0	5.3
% Moisture	1	%	14	22	20	14

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP39 2.00M Soil S20-My13368 May 06, 2020	TP37 0.50M Soil S20-My13369 May 06, 2020	TP37 1.50M Soil S20-My13370 May 06, 2020	TP38 0.50M Soil S20-My13371 May 06, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	600	290	470	420
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.0	5.3	5.8	5.3
% Moisture	1	%	17	17	13	23

Client Sample ID Sample Matrix			TP38 1.50M Soil	TP40 0.50M Soil	TP40 1.50M Soil	TP41 0.50M Soil
Eurofins Sample No.			S20-My13372	S20-My13373	S20-My13374	S20-My13375
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	540	56	140	360
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.3	5.4	5.1	5.5
% Moisture	1	%	10	26	13	19

Client Sample ID			TP41 1.50M	TP49 0.50M	TP49 1.50M	TP50 0.50M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-My13376	S20-My13377	S20-My13378	S20-My13379
Date Sampled			May 06, 2020	May 06, 2020	May 06, 2020	May 06, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	530	200	720	51
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.8	5.1	4.6	5.4
% Moisture	1	%	19	26	16	15

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	TP50 1.50M Soil S20-My13380 May 06, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	43
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.2
% Moisture	1	%	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	May 13, 2020	28 Days
- Method: E045 /E047 Chloride			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 13, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	May 13, 2020	28 Days
- Method: E045 Anions by Ion Chromatography			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	May 13, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	May 13, 2020	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	May 11, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Perth Phone: +61 8 9251 9600 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Construction Sciences Pty Ltd

Address:

2/4 Kellogg Rd Glendenning NSW 2761

Project Name: Project ID:

LUDDENHAM ROAD ORCHARD HILLS HBB

5017200153

Order No.:

Ch CC PH Su Mc Ca

Phone:

Fax:

Report #: 718526

02 9854 1700

Priority: Contact Name:

Received: May 8, 2020 4:25 PM

Due: May 15, 2020 5 Dav

Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

New Zealand

35 O'Rorke Road

Penrose, Auckland 1061

Phone: +64 9 526 45 51

Auckland

IANZ # 1327

		Sa	mple Detail			าloride	onductivity (1:5 aqueous extract at 25°C as c.)	1 (1:5 Aqueous extract at 25°C as rec.)	Jiphate (as SO4)	oisture Set	ation Exchange Capacity
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271							Х
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794								
Pert	h Laboratory - I	NATA Site # 237	36								
Exte	rnal Laboratory	<u>/</u>									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP32 0.20M	May 06, 2020		Soil	S20-My13360	Х		Х	Х	Х	Х
2	TP32 0.50M	May 06, 2020		Soil	S20-My13361		Х	Х		Х	
3	TP32 1.50M	May 06, 2020		Soil	S20-My13362		Х	Х		Х	
4	TP36 0.50M	May 06, 2020		Soil	S20-My13363		Х	Х		Х	
5	TP36 1.50M	May 06, 2020		Soil	S20-My13364		Х	Х		Х	
6	TP39 0.50M	May 06, 2020		Soil	S20-My13365		Х	Х		Х	
7	TP39 1.00M	May 06, 2020		Soil	S20-My13366		Х	Х		Х	
8	TP39 1.50M	May 06, 2020		Soil	S20-My13367		Х	Х		Х	
9	TP39 2.00M	May 06, 2020		Soil	S20-My13368		Х	Х		Х	
10	TP37 0.50M	May 06, 2020		Soil	S20-My13369		Х	Χ		Х	

Page 4 of 8

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Construction Sciences Pty Ltd

2/4 Kellogg Rd Glendenning

NSW 2761

Project Name:

LUDDENHAM ROAD ORCHARD HILLS HBB

Project ID:

5017200153

Order No.:

Report #: Phone:

718526 02 9854 1700

Fax:

Received: May 8, 2020 4:25 PM

Due: May 15, 2020

Priority: 5 Day **Contact Name:** Vipul DeSilva

Eurofins Analytical Services Manager: Ursula Long

New Zealand

		Sa	mple Detail			Chloride	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Moisture Set	Cation Exchange Capacity
Melk	oourne Laborat	ory - NATA Site	# 1254 & 142	71							Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
Bris	bane Laborator	ry - NATA Site #	20794								
Pert	h Laboratory -	NATA Site # 237	36								
11	TP37 1.50M	May 06, 2020		Soil	S20-My13370		Х	Х		Х	
12	TP38 0.50M	May 06, 2020		Soil	S20-My13371		Х	Х		Х	
13	TP38 1.50M	May 06, 2020		Soil	S20-My13372		Х	Х		Х	
14	TP40 0.50M	May 06, 2020		Soil	S20-My13373		Х	Х		Х	
15	TP40 1.50M	May 06, 2020		Soil	S20-My13374		Х	Х		Х	
16	TP41 0.50M	May 06, 2020		Soil	S20-My13375		Х	Х		Х	
17	TP41 1.50M	May 06, 2020		Soil	S20-My13376		Х	Х		Х	
18	TP49 0.50M	May 06, 2020		Soil	S20-My13377		Х	Х		Х	
19	TP49 1.50M	May 06, 2020		Soil	S20-My13378		Х	Х		Х	
20	TP50 0.50M	May 06, 2020		Soil	S20-My13379		Х	Х		Х	
21	TP50 1.50M	May 06, 2020		Soil	S20-My13380		Х	Х		Х	
Test	Counts					1	20	21	1	21	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride			mg/kg	< 10			10	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 10			10	Pass	
Method Blank									
Cation Exchange Capacity									
Cation Exchange Capacity			meq/100g	< 0.05			0.05	Pass	
LCS - % Recovery									
Chloride			%	105			70-130	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	108			70-130	Pass	
Sulphate (as SO4)			%	107			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S20-My14203	NCP	%	104			70-130	Pass	
Sulphate (as SO4)	S20-My14203	NCP	%	103			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		,			,				
				Result 1	Result 2	RPD			
Chloride	S20-My14203	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Sulphate (as SO4)	S20-My14203	NCP	mg/kg	23	22	2.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My13363	СР	uS/cm	260	270	1.6	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My13363	СР	pH Units	4.8	4.7	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-My13364	CP	%	14	19	27	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My13369	СР	pH Units	5.3	5.4	Pass	30%	Pass	
Duplicate							1		
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My13373	СР	uS/cm	56	59	4.8	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My13373	СР	pH Units	5.4	5.4	Pass	30%	Pass	
Duplicate							1		
				Result 1	Result 2	RPD			
% Moisture	S20-My13374	CP	%	13	13	2.0	30%	Pass	
Duplicate									
		,		Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-My13379	СР	uS/cm	51	45	12	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-My13379	СР	pH Units	5.4	5.6	Pass	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised By

Ursula Long Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal (VIC)
Gabriele Cordero Senior Analyst-Inorganic (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 8 of 8

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 1 of 9

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number12385/S/783540Sample LocationSampling MethodTested As ReceivedLocation20200507Date Sampled7/05/2020Test PitTP20

Sampled By Client Sampled Depth m 0.20m-0.30m

Date Tested 15/05/2020 Foundation

Att. Drying Method Oven Dried Material Source Existing
Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Brown Sandy Silty CLAY

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		36	
Plastic Limit (%)		14	
Plasticity Index (%)		22	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385 Mel 1 -e

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 2 of 9

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number12385/S/783541Sample LocationSampling MethodTested As ReceivedLocation20200507Date Sampled7/05/2020Test PitTP24

Sampled By Client Sampled Depth m 0.40m-0.50m

Date Tested 15/05/2020 Foundation

Att. Drying Method Air Dried Material Source Existing
Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Red/Brown Silty CLAY

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		80	
Plastic Limit (%)		23	
Plasticity Index (%)		57	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385 M1) -

Form ID: W11bRep Rev 1

Approved Signatory: Nigel Byrne

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 3 of 9 Report Date / Page: 25/05/2020

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number 12385/S/783542 Sample Location Sampling Method Tested As Received Location 20200508 Date Sampled 8/05/2020 Test Pit TP16 Sampled By Client Sampled Depth m 0.50m **Date Tested** 22/05/2020

Foundation

Oven Dried Att. Drying Method Material Source Existing Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Brown Silty Clay

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		66	
Plastic Limit (%)		20	
Plasticity Index (%)		46	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 4 of 9 Report Date / Page: 25/05/2020

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number 12385/S/783543 Sample Location Sampling Method Tested As Received Location 20200508 Date Sampled 8/05/2020 Test Pit TP15 Sampled By Client Sampled Depth m 1.50m **Date Tested** 15/05/2020

Foundation

Oven Dried Att. Drying Method Material Source Existing Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Grey Silty CLAY

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		68	
Plastic Limit (%)		20	
Plasticity Index (%)		48	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

Form ID: W11bRep Rev 1

ABN: 74 128 806 735

Address:

Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 5 of 9

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number 12385/S/783547 Sample Location Sampling Method Tested As Received Location 20200506 Date Sampled 6/05/2020 Test Pit TP80 Sampled By Client Sampled Depth m 0.30m

Date Tested 15/05/2020 Foundation

Att. Drying Method Oven Dried Material Source Existing
Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Red/Brown CLAY

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		75	
Plastic Limit (%)		23	
Plasticity Index (%)		52	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385 Approved Signatory: Nigel Byrne

Form ID: W11bRep Rev 1

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 6 of 9 Report Date / Page: 25/05/2020

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number 12385/S/783548 Sample Location Sampling Method Tested As Received Location 20200506 Date Sampled 6/05/2020 Test Pit TP74 Sampled By Client Sampled Depth m 1.50m **Date Tested** 22/05/2020

Foundation

Oven Dried Att. Drying Method Material Source Existing Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Brown Silty Clay

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		70	
Plastic Limit (%)		21	
Plasticity Index (%)		49	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

ABN: 74 128 806 735

Address:

Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 7 of 9

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number 12385/S/783549 Sample Location Sampling Method Tested As Received Location 20200506 Date Sampled 6/05/2020 Test Pit **TP66** Sampled By Client Sampled Depth m 0.50m

Date Tested 15/05/2020 Foundation

Att. Drying Method Oven Dried Material Source Existing
Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Brown Sandy Silty CLAY

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		71	
Plastic Limit (%)		24	
Plasticity Index (%)		47	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

Signatory: Nigol Byrna

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road,

Glendenning NSW 2761

Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 8 of 9 Report Date / Page: 25/05/2020

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number 12385/S/783552 Sample Location Sampling Method Tested As Received Location 20200505 Date Sampled 5/05/2020 Test Pit TP54 Sampled By Client Sampled Depth m 0.50m **Date Tested** 15/05/2020

Foundation

Oven Dried Att. Drying Method Material Source Existing Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Brown Silty CLAY

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		59	
Plastic Limit (%)		21	
Plasticity Index (%)		38	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

ATTERBERG LIMITS REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212511-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 9 of 9 Report Date / Page: 25/05/2020

Test Procedures: AS1289.3.1.1, AS 1289.3.3.1, AS1289.3.2.1, AS1289.2.1.1

Sample Number 12385/S/783558 Sample Location Sampling Method Tested As Received Location 20200504 Date Sampled 4/05/2020 Test Pit TP38 Sampled By Client Sampled Depth m 1.50m **Date Tested** 22/05/2020

Foundation

Oven Dried Att. Drying Method Material Source Existing Atterberg Preparation Dry Sieved Material Type In-Situ

Material Description Brown Silty Clay

Atterberg Limits Results			
Atterberg Limit	Specification Minimum	Test Result	Specification Maximum
Liquid Limit (%)		71	
Plastic Limit (%)		21	
Plasticity Index (%)		50	
Linear Shrinkage (%)			
Linear Shrinkage Defects:			

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

Form ID: W11bRep Rev 1

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 1 of 10

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783544
Sampling Method Tested As Received

Date Sampled 7/05/2020

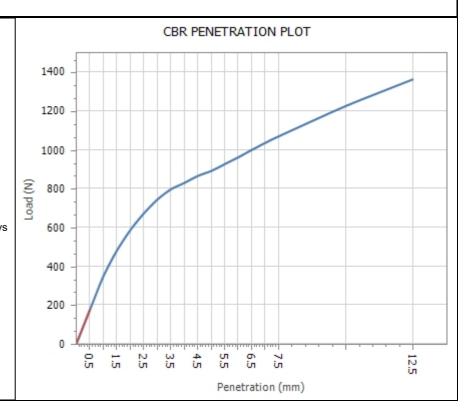
Sampled By Client Sampled
Date Tested 18/05/2020

Material Source Existing
Material Type In-Situ

Client Reference -

Sample Location
Location 20200507

Test Pit TP44


Depth m 0.20m-0.60m Foundation

Material Limit Start Material Limit End

Compactive Effort Standard

Material Description Red Silty Clay

Maximum Dry Density (t/m³):	1.55
Optimum Moisture Content (%):	21.0
Field Moisture Content (%):	17.8
Sample Percent Oversize (%)	1.0
Oversize Included / Excluded	Excluded
Target Density Ratio (%):	100
Target Moisture Ratio (%):	100
Placement Dry Density (t/m³):	1.55
Placement Dry Density Ratio (%):	100.0
Placement Moisture Content (%):	20.7
Placement Moisture Ratio (%):	99.5
Test Condition / Soaking Period:	Soaked / 4 Day
CBR Surcharge (kg)	9.0
Dry Density After Soak (t/m³):	1.51
Total Curing Time (hrs)	n/a
Liquid Limit Method	n/a
Moisture (top 30mm) After Soak (%)	28.3
Moisture (remainder) After Soak (%)	25.0
CBR Swell (%):	3.0
Minimum CBR Specification (%):	-
CBR Value @ 2.5mm (%):	5

Remarks Results apply to the sample/s as received.

NATA

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Luddenham Road, Orchard Hills HBB Location:

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 2 of 10 Report Date / Page: 25/05/2020

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783545

Sampling Method Tested As Received

Date Sampled 7/05/2020 Sampled By Client Sampled

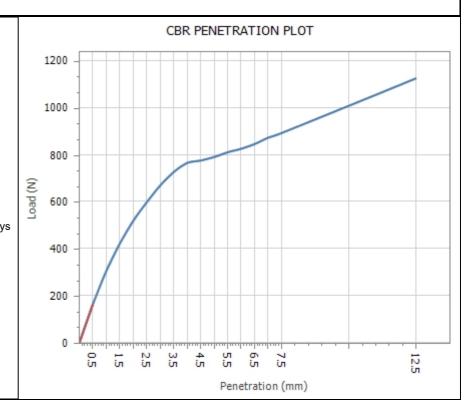
16/05/2020 **Date Tested** Material Source Existing

Material Type In-Situ Client Reference

Sample Location Location 20200507

Test Pit TP47

Depth m 0.20m-0.60m


Foundation

Material Limit Start Material Limit End

Compactive Effort Standard

Material Description Brown Silty Gravelly Clay

Maximum Dry Density (t/m³):	1.54
Optimum Moisture Content (%):	22.5
Field Moisture Content (%):	19.4
Sample Percent Oversize (%)	2.0
Oversize Included / Excluded	Excluded
Target Density Ratio (%):	100
Target Moisture Ratio (%):	100
Placement Dry Density (t/m³):	1.53
Placement Dry Density Ratio (%):	99.5
Placement Moisture Content (%):	22.5
Placement Moisture Ratio (%):	100.0
Test Condition / Soaking Period:	Soaked / 4 Day
CBR Surcharge (kg)	9.0
Dry Density After Soak (t/m³):	1.47
Total Curing Time (hrs)	n/a
Liquid Limit Method	n/a
Moisture (top 30mm) After Soak (%)	37.3
Moisture (remainder) After Soak (%)	32.1
CBR Swell (%):	4.0
Minimum CBR Specification (%):	-
CBR Value @ 2.5mm (%):	4.5
_	•

Results apply to the sample/s as received. Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

1986 Accreditation Number: Corporate Site Number: 12385

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 3 of 10

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783546

Sampling Method Tested As Received

Date Sampled 7/05/2020
Sampled By Client Sampled
Date Tested 18/05/2020

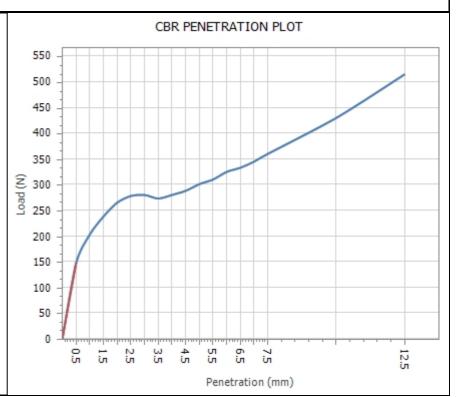
Material Source Existing
Material Type In-Situ

Client Reference -

Sample Location
Location 20200507

Test Pit TP34

Depth m 0.20m-0.60m Foundation


Material Limit Start

Material Limit End

Compactive Effort Standard

Material Description Brown clay

Maximum Dry Density (t/m³):	1.68
Optimum Moisture Content (%):	16.0
Field Moisture Content (%):	6.8
Sample Percent Oversize (%)	0.0
Oversize Included / Excluded	Excluded
Target Density Ratio (%):	100
Target Moisture Ratio (%):	100
Placement Dry Density (t/m³):	1.68
Placement Dry Density Ratio (%):	100.5
Placement Moisture Content (%):	16.1
Placement Moisture Ratio (%):	99.5
Test Condition / Soaking Period:	Soaked / 4 Days
CBR Surcharge (kg)	9.0
Dry Density After Soak (t/m³):	1.60
Total Curing Time (hrs)	25
Liquid Limit Method	Estimation
Moisture (top 30mm) After Soak (%)	29.1
Moisture (remainder) After Soak (%)	22.2
CBR Swell (%):	5.0
Minimum CBR Specification (%):	-
CBR Value @ 2.5mm (%):	2.0

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 4 of 10

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783550

Sampling Method Tested As Received

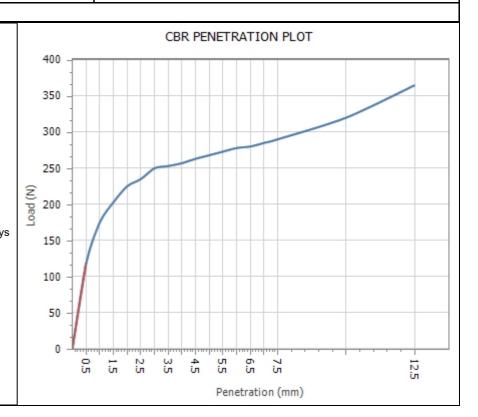
Date Sampled 6/05/2020
Sampled By Client Sampled
Date Tested 18/05/2020

Material Source Existing
Material Type In-Situ

Client Reference -

Sample Location
Location 20200506

Test Pit TP80


Depth m 0.20m-0.60m Foundation

Material Limit Start Material Limit End -

Compactive Effort Standard

Material Description Red Silty Clay

Maximum Dry Density (t/m³):	1.63
Optimum Moisture Content (%):	20.0
Field Moisture Content (%):	17.3
Sample Percent Oversize (%)	0.0
Oversize Included / Excluded	Excluded
Target Density Ratio (%):	100
Target Moisture Ratio (%):	100
Placement Dry Density (t/m³):	1.63
Placement Dry Density Ratio (%):	100.0
Placement Moisture Content (%):	20.3
Placement Moisture Ratio (%):	100.5
Test Condition / Soaking Period:	Soaked / 4 Day
CBR Surcharge (kg)	9.0
Dry Density After Soak (t/m³):	1.55
Total Curing Time (hrs)	n/a
Liquid Limit Method	n/a
Moisture (top 30mm) After Soak (%)	33.7
Moisture (remainder) After Soak (%)	24.1
CBR Swell (%):	5.5
Minimum CBR Specification (%):	-
CBR Value @ 2.5mm (%):	2.0

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Luddenham Road, Orchard Hills HBB Location:

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 5 of 10 Report Date / Page: 25/05/2020

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783551

Sampling Method 6/05/2020

Date Sampled Sampled By Client Sampled **Date Tested**

Material Source Existing Material Type

Client Reference

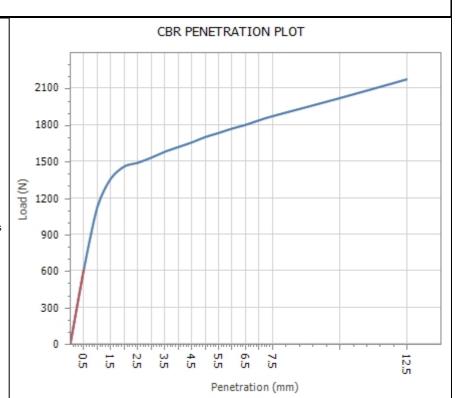
Tested As Received

18/05/2020

In-Situ

Sample Location Location 20200506

Test Pit **TP70**


Depth m 0.20m-0.50m Foundation

Material Limit Start Material Limit End

Compactive Effort Standard

Material Description Red clay

Maximum Dry Density (t/m³):	1.53
Optimum Moisture Content (%):	27.5
Field Moisture Content (%):	21.0
Sample Percent Oversize (%)	0.0
Oversize Included / Excluded	Excluded
Target Density Ratio (%):	100
Target Moisture Ratio (%):	100
Placement Dry Density (t/m³):	1.53
Placement Dry Density Ratio (%):	100.0
Placement Moisture Content (%):	27.5
Placement Moisture Ratio (%):	100.5
Test Condition / Soaking Period:	Soaked / 4 Days
CBR Surcharge (kg)	9.0
Dry Density After Soak (t/m³):	1.53
Total Curing Time (hrs)	24
Liquid Limit Method	Estimation
Moisture (top 30mm) After Soak (%)	-
Moisture (remainder) After Soak (%)	-
CBR Swell (%):	0.5

Results apply to the sample/s as received. Remarks

Minimum CBR Specification (%):

CBR Value @ 2.5mm (%):

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

11

1986 Accreditation Number: Corporate Site Number: 12385

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Luddenham Road, Orchard Hills HBB Location:

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 6 of 10 Report Date / Page: 25/05/2020

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783553

Sampling Method Tested As Received

Date Sampled 5/05/2020 Sampled By Client Sampled Date Tested 16/05/2020

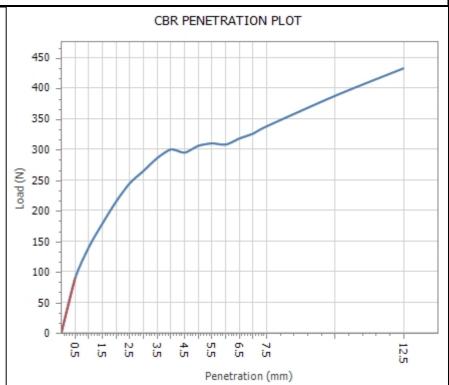
Material Source Existing Material Type In-Situ

Client Reference

Sample Location Location 20200505

Test Pit TP64

Depth m 0.40m-0.60m Foundation


Material Limit Start

Material Limit End

Compactive Effort Standard

Material Description Brown Silty Slightly Gravelly Clay

CBR Value @ 2.5mm (%):	2.0
Minimum CBR Specification (%):	-
CBR Swell (%):	5.0
Moisture (remainder) After Soak (%)	23.2
Moisture (top 30mm) After Soak (%)	30.4
Liquid Limit Method	n/a
Total Curing Time (hrs)	n/a
Dry Density After Soak (t/m³):	1.57
CBR Surcharge (kg)	9.0
Test Condition / Soaking Period:	Soaked / 4 Day
Placement Moisture Ratio (%):	99.5
Placement Moisture Content (%):	15.7
Placement Dry Density Ratio (%):	100.5
Placement Dry Density (t/m³):	1.65
Target Moisture Ratio (%):	100
Target Density Ratio (%):	100
Oversize Included / Excluded	Excluded
Sample Percent Oversize (%)	0.0
Field Moisture Content (%):	14.2
Optimum Moisture Content (%):	16.0
Maximum Dry Density (t/m³):	1.65

Results apply to the sample/s as received. Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

1986 Accreditation Number: Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 7 of 10

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783554

Sampling Method Tested As Received

Date Sampled 5/05/2020
Sampled By Client Sampled

Date Tested 16/05/2020 Material Source Existing

Material Type In-Situ

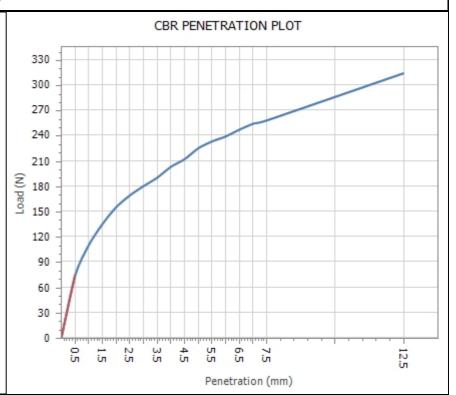
Client Reference -

Sample Location

Location 20200505
Test Pit TP61

Depth m 0.20m-0.60m

Foundation


Material Limit Start

Material Limit End

Compactive Effort Standard

Material Description Brown Silty Slightly Gravelly Clay

CBR Value @ 2.5mm (%):	1.5
	1.5
Minimum CBR Specification (%):	_
CBR Swell (%):	5.5
Moisture (remainder) After Soak (%)	29.4
Moisture (top 30mm) After Soak (%)	35.5
Liquid Limit Method	n/a
Total Curing Time (hrs)	n/a
Dry Density After Soak (t/m³):	1.59
CBR Surcharge (kg)	9.0
Test Condition / Soaking Period:	Soaked / 4 Days
Placement Moisture Ratio (%):	100.5
Placement Moisture Content (%):	17.7
Placement Dry Density Ratio (%):	100.5
Placement Dry Density (t/m³):	1.68
Target Moisture Ratio (%):	100
Target Density Ratio (%):	100
Oversize Included / Excluded	Excluded
Sample Percent Oversize (%)	0.0
Field Moisture Content (%):	15.1
Optimum Moisture Content (%):	17.5
Maximum Dry Density (t/m³):	1.67

Remarks Results apply to the sample/s as received.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Luddenham Road, Orchard Hills HBB Location:

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 8 of 10 Report Date / Page: 25/05/2020

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783555 Sampling Method Tested As Received

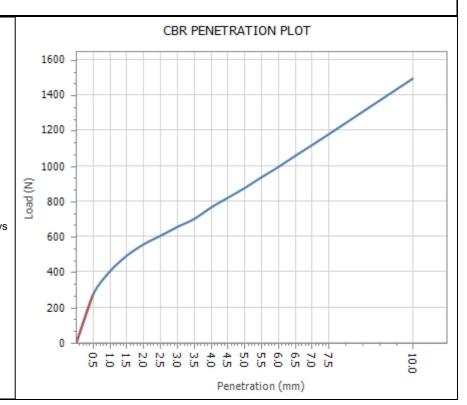
Date Sampled 5/05/2020 Sampled By Client Sampled 18/05/2020 **Date Tested**

Material Source Existing Material Type In-Situ

Client Reference

Sample Location Location 20200505

Test Pit TP58


0.20m-0.60m Depth m Foundation

Material Limit Start Material Limit End

Compactive Effort Standard

Material Description Brown Silty Garvelly Clay

, , ,	, - ,
Maximum Dry Density (t/m³):	1.71
Optimum Moisture Content (%):	16.0
Field Moisture Content (%):	13.5
Sample Percent Oversize (%)	1.0
Oversize Included / Excluded	Excluded
Target Density Ratio (%):	100
Target Moisture Ratio (%):	100
Placement Dry Density (t/m³):	1.71
Placement Dry Density Ratio (%):	100.0
Placement Moisture Content (%):	15.9
Placement Moisture Ratio (%):	100.0
Test Condition / Soaking Period:	Soaked / 4 Day
CBR Surcharge (kg)	9.0
Dry Density After Soak (t/m³):	1.65
Total Curing Time (hrs)	n/a
Liquid Limit Method	n/a
Moisture (top 30mm) After Soak (%)	24.4
Moisture (remainder) After Soak (%)	21.0
CBR Swell (%):	3.5
Minimum CBR Specification (%):	-
CBR Value @ 2.5mm (%):	4.5

Results apply to the sample/s as received. Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

1986 Accreditation Number: Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 Fax: 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Luddenham Road, Orchard Hills HBB Location:

Component: Foundation

Area Description: Insitu Foundation Testing Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Page 9 of 10 Report Date / Page: 25/05/2020

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783556

Sampling Method Tested As Received

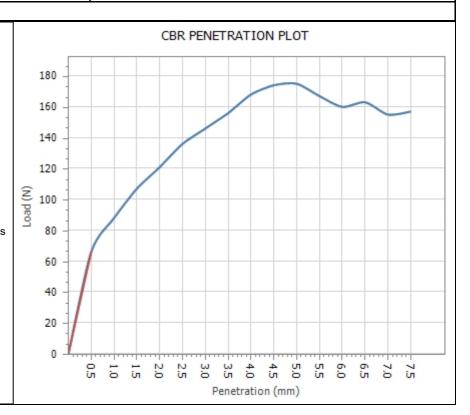
Date Sampled 5/05/2020 Sampled By Client Sampled

Date Tested 16/05/2020 Material Source Existing

Material Type In-Situ Client Reference

Sample Location Location 20200505

> Test Pit TP51


Depth m 0.20m-0.50m Foundation

Material Limit Start Material Limit End

Compactive Effort Standard

Brown Silty Gravelly Clay Material Description

	, ,
Maximum Dry Density (t/m³):	1.57
Optimum Moisture Content (%):	15.5
Field Moisture Content (%):	11.6
Sample Percent Oversize (%)	2.0
Oversize Included / Excluded	Excluded
Target Density Ratio (%):	100
Target Moisture Ratio (%):	100
Placement Dry Density (t/m³):	1.57
Placement Dry Density Ratio (%):	100.5
Placement Moisture Content (%):	15.3
Placement Moisture Ratio (%):	99.5
Test Condition / Soaking Period:	Soaked / 4 Days
CBR Surcharge (kg)	9.0
Dry Density After Soak (t/m³):	1.45
Total Curing Time (hrs)	n/a
Liquid Limit Method	n/a
Moisture (top 30mm) After Soak (%)	37.5
Moisture (remainder) After Soak (%)	31.5
CBR Swell (%):	8.5
Minimum CBR Specification (%):	-
CBR Value @ 2.5mm (%):	1.0

Results apply to the sample/s as received. Remarks

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

1986 Accreditation Number: Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

ABN: 74 128 806 735

Address: Unit 2/4 Kellogg Road, Glendenning NSW 2761 Laboratory: Glendenning Laboratory

Phone: 02 4577 3555 **Fax:** 02 4577 9055

Email: Sydney@constructionsciences.net

CALIFORNIA BEARING RATIO REPORT

Client: Construction Sciences - Professional Services

Client Address: 31 Anvil Road, Seven Hills

Project: Luddenham Road, Orchard Hills HBB

Location: Luddenham Road, Orchard Hills HBB

Component: Foundation

Area Description: Insitu Foundation Testing

Report Number: 12385/R/212518-1

Project Number: 12385/P/1320

Lot Number:

Internal Test Request: 12385/T/97794

Client Reference/s: 5017200153

Report Date / Page: 25/05/2020 Page 10 of 10

Test Procedures AS1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1

Sample Number 12385/S/783557

Sampling Method Tested As Received

Date Sampled 4/05/2020
Sampled By Client Sampled
Date Tested 18/05/2020

Date Tested 18/05/202

Material Source Existing

Material Type In-Situ

Client Reference -

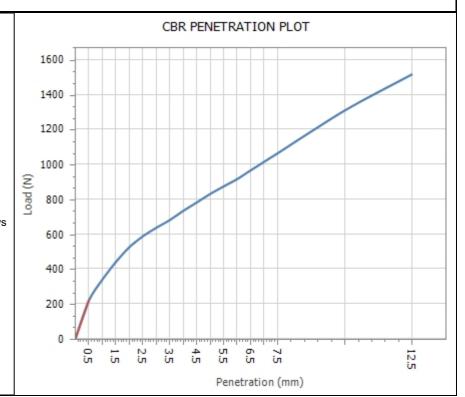
Sample Location

 Location
 20200504

 Test Pit
 TP39

Depth m 0.20m-0.50m

Foundation


Material Limit Start

Material Limit End

Compactive Effort Standard

Material Description Brown Silty Gravelly Clay

' '	<u> </u>
Maximum Dry Density (t/m³):	1.66
Optimum Moisture Content (%):	16.5
Field Moisture Content (%):	15.5
Sample Percent Oversize (%)	1.0
Oversize Included / Excluded	Excluded
Target Density Ratio (%):	100
Target Moisture Ratio (%):	100
Placement Dry Density (t/m³):	1.66
Placement Dry Density Ratio (%):	100.0
Placement Moisture Content (%):	16.3
Placement Moisture Ratio (%):	100.0
Test Condition / Soaking Period:	Soaked / 4 Day
CBR Surcharge (kg)	9.0
Dry Density After Soak (t/m³):	1.60
Total Curing Time (hrs)	n/a
Liquid Limit Method	n/a
Moisture (top 30mm) After Soak (%)	26.5
Moisture (remainder) After Soak (%)	20.3
CBR Swell (%):	3.5
Minimum CBR Specification (%):	-
CBR Value @ 2.5mm (%):	4.5

Remarks Results apply to the sample/s as received.

NATA

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: 1986 Corporate Site Number: 12385

Approved Signatory: Nigel Byrne

Contact

31 Anvil Rd Seven Hills, NSW, 2147

Phone: + 612 8646 2000

www.constructionsciences.net